第三节:numpy之数组数学运算】的更多相关文章

一.复数的数学运算 复数可以用使用函数 complex(real, imag) 或者是带有后缀j的浮点数来指定 a=complex(2,4) print(a) # (2+4j) b=2-5j # 获取对应的实部.虚部和共轭复数 print(b.real,b.imag,b.conjugate()) # 2.0 -5.0 (2+5j) # 数学运算 print(a+b) # (4-1j) print(abs(a)) # 4.47213595499958 复数函数比如正弦.余弦或平方根,使用 cmat…
本节主要讲解numpy的几个常用的聚合运算,包括求和sum.求平均mean和求方差var. 一.求和sum import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) result = np.sum(arr) print(result) 21 二.求平均mean import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) result = np.mean(arr) print(resu…
import numpy as np # 一维数组 print('==========# 一维数组===========') A = np.array([1, 2, 3, 4]) print(A) # 数组的维数可以通过 np.dim() 函数获得 print(np.ndim(A)) # 数组的形状可以通过实例变量 shape 获得 # 注意,这里的 A.shape 的结果是个元组(tuple). # 这是因为一维数组的情况下也要返回和多维数组的情况下一致的结果. # 例如,二维数组时返回的是元…
指令:let.expr.array.convert.tput.date.read.md5.ln.apt.系统信息 一:特殊符号用法整理 系统变量 $# 是传给脚本的参数个数 $0 是脚本本身的名字 $1 是传递给该shell脚本的第一个参数 $2 是传递给该shell脚本的第二个参数 $@ 是传给脚本的所有参数的列表 $* 是以一个单字符串显示所有向脚本传递的参数,与位置变量不同,参数可超过9个 $$ 是脚本运行的当前进程ID号 $? 是显示最后命令的退出状态,0表示没有错误,其他表示有错误 算…
本章主要介绍的是ndarray数组的操作和运算! 一. ndarray数组的操作: 操作是指对数组的索引和切片.索引是指获取数组中特定位置元素的过程:切片是指获取数组中元素子集的过程. 1.一维数组的索引和切片与python的列表类似: 索引: import numpy as np a = np.array([9, 8, 7, 6, 5]) print(a[2]) 7 切片:起始编号:终止编号:(不含):步长 三元素用冒号分割 import numpy as np a = np.array([9…
1. 数组的集合运算 1.1. 并集 np.union1d(a,b)计算数组的并集: In [1]: import numpy as np In [2]: a = np.array([1,2,3]) In [3]: b = np.array([3,4,5]) In [4]: np.union1d(a,b) Out[4]: array([1, 2, 3, 4, 5]) 1.2. 交集 np.intersect1d(a,b)计算数组的交集: In [10]: import numpy as np I…
numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >>> arr array([[1, 2, 3], [4, 5, 6]]) >>> arr*arr array([[ 1, 4, 9], [16, 25, 36]]) 数组的减法 >>> arr-arr array([[0, 0, 0], [0, 0, 0]]) 数组…
写的最新的网络认证方案代码遇到了一个难题,唯一的解决办法就是使用复数空间,需要使用复数来执行一些计算操作. 复数可以用使用函数complex(real, imag) 或者是带有后缀j 的浮点数来指定.比如: >>> a = complex(2, 4) >>> b = 3 - 5j >>> a (2+4j) >>> b (3-5j) 对应的实部.虚部和共轭复数可以很容易的获取.就像下面这样: >>> a.real 2.…
numpy使用数组进行数据处理 meshgrid函数 理解: 二维坐标系中,X轴可以取三个值1,2,3, Y轴可以取三个值7,8, 请问可以获得多少个点的坐标? 显而易见是6个: (1,7)(2,7)(3,7) (1,8)(2,8)(3,8) >>> import numpy as np#导入numpy >>> a=np.array([1,2,3])#创建一维数组 >>> b=np.array([7,8]) >>> res=np.me…