题意:给出n张牌,标号为1-n,然后给出两个序列,序列1表示序列1,2,3,4……,n洗一次牌后到达的,序列2表示目标序列,问初始序列按序列1的洗牌方式洗几次能到达序列2的情况,如果不能到达输出-1. 题解:在初始序列和序列1的变换中找出1能变到那些牌,这些牌构成一个集合,这些集合中的牌必然是能够相互到达的,然后在序列2中也找出这样一个集合,集合中这些元素的相互顺序是要一样的,这就是判断能否达到,然后这样可以列出几个线性同余方程组,用中国剩余定理求解即可(顺便献上中国剩余定理模板). #incl…
https://vijos.org/p/1164 好赞orz. 对于求一组线性同余方程 x=a[i](mod m[i]) 这里任意两个m[i]和m[j]都互质 那么可以用中国剩余定理来做. 对中国剩余定理的理解:(转自matrix67神犇的blog:http://www.matrix67.com/blog/archives/5100) 最后一点可能需要一些解释.让我们来举些例子.假如有 1 路和 2 路两种公交车,其中 1 路车每 6 分钟一班,2 路车每 8 分钟一班.如果你刚刚错过两路公交车…
题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_s}}$ 然后,分别求出每个组合数模每个$p_i^{{k_i}}$的值,这里可以用扩展lucas定理求解,(以下其实就是扩展lucas定理的简略证明) 关于$C_n^m\% {p^k}$, $C_n^m = \frac{{n!}}{{m!(n - m)!}}$, 我们以$n=19,p=3,k=2$为…
题意 求 $\displaystyle \sum_{i=1}^n F_i^m $,($1 \leq n\leq 10^9,1 \leq  m\leq 10^3$),答案对 $10^9$ 取模. 分析 显然,斐波那契数列在模意义下是有循环节的. 模 $10^9$ 本身的循环节为 $150000000$,还是很大,没意义. 设答案为求和的结果为 $ans$,根据中国剩余定理,要求 $ans \% p$,可先求 $ans \% p_1$ 和 $ans \% p_2$(其中 $p_1p_2 = p$,且…
数论_CRT(中国剩余定理)& Lucas (卢卡斯定理) 前言 又是一脸懵逼的一天. 正文 按照道理来说,我们应该先做一个介绍. 中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. 现在有方程组:中国剩余定理指出: 扩展中国剩余定理 在一般情况下,要求任两个数互质这个条件太苛刻了,CRT派不上用场,我们需要一个更具普遍性的结论,这就是EX-CRT.虽然是称为EX-CRT,但这个定…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1573 X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5012    Accepted Submission(s): 1667 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] =…
Biorhythms Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 2408    Accepted Submission(s): 1053 Problem Description Some people believe that there are three cycles in a person's life that start…
礼物 题意: 求\[C(n,m)\ \%\ p\] \(n,m,p\le 10^9\),且若\(p=\prod_{i=1}^{k}{p_i}^{c_i}\),则\(\forall i\in [1..k]{p_i}^{c_i}\le 10^5.\) 注意到若\[p=\prod_{i=1}^{k}{p_i}^{c_i},则\forall i\in [1..k]{p_i}^{c_i}\le 10^5.\] 于是有一个经典套路就是,求出\(k\)组\(A_i=C(n,m)\% {p_i}^{c_i}\)…
注意一下:: 题目是 \[x≡b_i\pmod {a_i}\] 我总是习惯性的把a和b交换位置,调了好久没调出来,\(qwq\). 本题解是按照 \[x≡a_i\pmod {b_i}\] 讲述的,请注意 本题\(m_i\)不一定两两互质,所以中国剩余定理在本题不再适用. 说是扩展中国剩余定理,其实好像和中国剩余定理关系不大. 使用数学归纳法,如果我们已经知道了前\(k-1\)个方程组构成的一个解,记作\(x\),记\(m=\Pi_{i=1}^{k-1}m_i\),则\(x+i*m(i∈Z)\)是…
题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(Fib_i = \frac{\sqrt5}{5}[(\frac{1+\sqrt5}{2})^i-(\frac{1-\sqrt5}{2})^i]\),因为取模是个质数,我们可以用二次剩余定理得到\(\sqrt5 \mod 1e9+9 = 383008016\),然后就可以得到\(\frac{\sqrt5…