传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 若gcd(x, y) = 1,则gcd(x * n, y * n) = n.那么,当y固定不变时,小于y且与y互质的个数为phi(y),所以此时对答案的贡献是phi(y) * 小于等于 n / y的素数的个数 * 2,最后乘2是因为数对是有序的.到最后,还要加上小于等于n的素数个数,因为(p, p)这种x = y的数对并没有计算进去. #include <cstdio> const…
只会搬运YL巨巨的博客 积性函数 定义 积性函数:对于任意互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数. 完全积性函数:对于任意整数a和b有性质f(ab)=f(a)f(b)的数论函数 性质 两个积性函数的狄利克雷卷积仍为积性函数. 若积性函数满足 \(f(n^p)=f^p(n)\)则它一定是完全积性函数.因为一个数可以唯一分解,则它一定可以表示成质数相乘的形式:因为他时积性函数所以,\(f(\prod_{i=1}^{n}p_i)=\prod _{i=1}^{n}f(p_i)\),…
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体证明看po主的博客 ^0^ #超时:这里直接用欧拉函数暴力搞还是不可以的,用到线性筛欧拉函数,这里总和爆int,要用long long */ #include<bits/stdc++.h> #define ll long long using namespace std; /***********…
GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.(a,b) can be…
题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 题意是给你n,求所有gcd(i , j)的和,其中1<=i <j <n. 要是求gcd(n , x) = y的个数的话,那么就是求gcd(n/y , x/y) = 1的个数,也就是求n/y的欧拉函数.这里先预处理出欧拉函数,然后通过类似筛法的技巧筛选出答案累加起来. #include <iostream> #include &l…
题目:给出n,求gcd(1,2)+gcd(1,3)+gcd(2,3)+gcd(1,4)+gcd(2,4)+gcd(3,4)+...+gcd(1,n)+gcd(2,n)+...+gcd(n-1,n) 此题和UVA 11426 一样,不过n的范围只有20000,但是最多有20000组数据. 当初我直接照搬UVA11426,结果超时,因为没有预处理所有的结果(那题n最多4000005,但最多只有100组数据),该题数据太多了额... 思路:令sum(n)=gcd(1,n)+gcd(2,n)+...+g…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于样例(2,2),(2,4),(3,3),(4,2) 1&…
题目链接 题意 : 从[a,b]中找一个x,[c,d]中找一个y,要求GCD(x,y)= k.求满足这样条件的(x,y)的对数.(3,5)和(5,3)视为一组样例 . 思路 :要求满足GCD(x,y)=k的对数,则将b/k,d/k,然后求GCD(x,y)=1的对数即可.假设b/k >= d/k ;对于1到b/k中的某个数s,如果s<=d/k,则因为会有(x,y)和(y,x)这种会重复的情况,所以这时候的对数就是比s小的与s互质的数的个数,即s的欧拉函数.至于重复的情况是指:在d/k中可能有大于…
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13015 143295493160 Solution 这道题我用莫比乌斯反演和欧拉函数都写了一遍,发现欧拉函数比莫比乌斯反演优秀? 求所有\(gcd=k\)的数对的个数,记作\(f[k],ans=\sum_{i=1}^{n}(f[i]-1)\),为什么还要-1,我们注意到\(j=i+1\),自己与自己…
link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD粘过来就行 代码太丑,没开O2 TLE5个点 #include <cstdio> #include <functional> using namespace std; const int fuck = 10000000; int prime[10000010], tot; bool v…