不多说,直接上干货! Spark 同时支持Scala.Python.Java 三种应用程序API编程接口和编程方式, 考虑到大数据处理的特性,一般会优先使用Scala进行编程,其次是Python,最后才是Java. 无论使用Scala.Python还是Java编程程序都需要遵循Spark 编程模型,考虑对Spark平台支持的有力程度来说,Spark 对Scala语言的支持是最好的,因为它有最丰富的和最易用的编程接口. Spark 多语言编程的简介 Spark 目前支持Scala.Python.J…
不多说,直接上干货! 最关键的是转换算子Transformations和缓存算子Actions. 主要是对RDD进行操作. RDD Objects  ->  Scheduler(DAGScheduler)  -> Exectorss ,如同,人类一样,不断进化. 欢迎大家,加入我的微信公众号:大数据躺过的坑        人工智能躺过的坑       同时,大家可以关注我的个人博客:    http://www.cnblogs.com/zlslch/   和     http://www.cn…
打好基础,别小瞧它! spark的运行模式多种多样,在单机上既可以本地模式运行,也可以伪分布模式运行.而当以分布式的方式在集群中运行时.底层的资源调度可以使用Mesos或者Yarn,也可使用spark自带的Standalone模式. 1.Application : Application的概念和Hadoop MapReduce中的类似,都是用户编写的Spark应用程序,其中包含了一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码. 2.Driver : 使用Driver…
Spark存储管理机制 概要 01 存储管理概述 02 RDD持久化 03 Shuffle数据存储 04 广播变量与累加器 01 存储管理概述 思考: RDD,我们可以直接使用而无须关心它的实现细节,RDD是Spark的基础,但是有个问题大家也许会比较关心:RDD所操作的数据究竟在哪里?它是如何存储的. 回顾: 1.1 .存储管理模块架构—从架构上来看   1.1.1     通信层 通信层面采用主从方式实现通信(主从节点间互换消息) 1.1.2 存储层 存储层负责提供接口来存储数据(可把数据存…
本文是Linux Shell系列教程的第(十五)篇,更多Linux Shell教程请看:Linux Shell系列教程 函数可以将一个复杂功能划分成若干模块,从而使程序结构更加清晰,代码重复利用率更高. 高级语言都支持函数,Shell也不例外.今天就为大家介绍下Shell中函数相关用法. 一.Shell函数的语法 因为函数是脚本类语言,在执行时是逐行执行的,因此,Shell 函数必须先定义后使用. Shell 函数的定义格式如下: [ function ] funname [()] { comm…
[D3.V3.js系列教程]--(十五)SVG基本图形绘制 1.path <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>testD3-13-path.html</title> <script type="text/javascript" src="http://localhost:8080/spring/j…
Spark的算子的作用 首先,关于spark算子的分类,详细见 http://www.cnblogs.com/zlslch/p/5723857.html 1.Transformation 变换/转换算子 1.map算子 2.flatMap算子 3.mapPartitions算子 4.union算子 5.cartesian算子 6.grouBy算子 7.filter算子 8.sample算子 9.cache算子 10.persist算子 11.mapValues算子 12.combineByKey…
本博文的主要内容: 1.Hash Shuffle彻底解密 2.Shuffle Pluggable解密 3.Sorted Shuffle解密 4.Shuffle性能优化 一:到底什么是Shuffle? Shuffle中文翻译为"洗牌",需要Shuffle的关键性原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. 二:Shuffle可能面临的问题? 运行Task的时候才会产生Shuffle(Shuffle已经融化在Spark的算子中了). 1. 数据量非常大:[几千甚至上万…
很多人一个误区,Spark SQL重点不是在SQL啊,而是在结构化数据处理! Spark SQL结构化数据处理 概要: 01 Spark SQL概述 02 Spark SQL基本原理 03 Spark SQL编程 04 分布式SQL引擎 05 用户自定义函数 06 性能调优   Spark SQL概述 Spark SQL是什么? Spark SQL is a Spark module for structured data processing 特别注意:.3.0 及后续版本中,SchemaRD…
Spark SQL基本原理 1.Spark SQL模块划分 2.Spark SQL架构--catalyst设计图 3.Spark SQL运行架构 4.Hive兼容性 1.Spark SQL模块划分 Spark SQL模块划分为Core.caralyst.hive和hive- ThriftServer四大模块. Spark SQL依然是读取数据进去,然后你可以执行sql操作,然后你还可以执行其他的结构化操作,不光仅仅是只能sql操作哈!这一点,很多人都没理解到位. 也有数据的输入和输出的工作. 比…
Spark Streaming容错 检查点机制-checkpoint 什么是检查点机制? Spark Streaming 周期性地把应用数据存储到诸如HDFS 或Amazon S3 这样的可靠存储系统中以供恢复时使用的机制叫做检查点机制 检查点机制的作用 控制发生失败时需要重算的状态数 Spark Streaming通过lineage重算,检查点机制则可以控制需要在lineage中回溯多远 提供驱动器程序容错 如果流计算应用中的驱动器程序崩溃了,你可以重启驱动器程序,并让驱动器程序从检查点恢复,…
1.简介 按宏哥计划,本文继续介绍WebDriver关于元素定位大法,这篇介绍定位倒数二个方法:By xpath.xpath 的定位方法, 非常强大.  使用这种方法几乎可以定位到页面上的任意元素. 2.什么是xpath? xpath 是XML Path的简称, 由于HTML文档本身就是一个标准的XML页面,所以我们可以使用Xpath 的用法来定位页面元素. XPath 是XML 和Path的缩写,主要用于xml文档中选择文档中节点.基于XML树状文档结构,XPath语言可以用在整棵树中寻找指定…
Spark数据存储的核心是弹性分布式数据集(RDD). RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的. 逻辑上RDD的每个分区叫一个Partition. 在Spark的执行过程中,RDD经历一个个的Transfomation算子之后,最后通过Action算子进行触发操作. 逻辑上每经历一次变换,就会将RDD转换为一个新的RDD,RDD之间通过Lineage产生依赖关系,这个关系在容错中有很重要的作用. 变换的输入和输出都是RDD.RDD会被划分成很多的分区分布…
查询优化是传统数据库中最为重要的一环,这项技术在传统数据库中已经很成熟.除了查询优化, Spark SQL 在存储上也进行了优化,从以下几点查看 Spark SQL 的一些优化策略. (1)内存列式存储与内存缓存表       Spark SQL 可以通过 cacheTable 将数据存储转换为列式存储,同时将数据加载到内存进行缓存. cacheTable 相当于在分布式集群的内存物化视图,将数据进行缓存,这样迭代的或者交互式的查询不用再从 HDFS 读数据,直接从内存读取数据大大减少了 I/O…
本博文的主要内容如下:  1.通过案例观察Spark架构 2.手动绘制Spark内部架构 3.Spark Job的逻辑视图解析 4.Spark Job的物理视图解析 1.通过案例观察Spark架构 spark-shell中,默认情况下,没有任何的Job. 从Master角度讲:   1.管理CPU.MEM等资源(也考虑网络) 2.接收Driver端提交作业的请求,并为其分配资源(APPid等) 注:spark默认是粗粒度,即spark作业提交的时候就会为我们作业分配资源,后续运行的过程中一般使用…
Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变换/转换算子:这种变换并不触发提交作业,完成作业中间过程处理. Transformation 操作是延迟计算的,也就是说从一个RDD 转换生成另一个 RDD 的转换操作不是马上执行,需要等到有 Action 操作的时候才会真正触发运算. 2)Action 行动算子:这类算子会触发 SparkContext 提交 Job 作业.   Action 算子会触发 Spark 提交作业(Jo…
本博文主要内容:  1.再次思考pipeline 2.窄依赖物理执行内幕 3.宽依赖物理执行内幕 4.Job提交流程 一:再次思考pipeline 即使采用pipeline的方式,函数f对依赖的RDD中的数据的操作也会有2种方式: 1:f(record), f作用于集合的每一条记录,每次只作用于一条记录. 2.f(redord), f一次性作用于集合的全部数据. Spark采用的是第一种方式,原因: 1.spark无需等待,可以最大化的使用集群计算资源. 2.减少OOM的发生 3.最大化的有利于…
Spark SQL提供在大数据上的SQL查询功能,类似于Shark在整个生态系统的角色,它们可以统称为SQL on Spark. 之前,Shark的查询编译和优化器依赖于Hive,使得Shark不得不维护一套Hive分支,而Spark SQL使用Catalyst做查询解析和优化器,并在底层使用Spark作为执行引擎实现SQL的Operator. 用户可以在Spark上直接书写SQL,相当于为Spark扩充了一套SQL算子,这无疑更加丰富了Spark的算子和功能,同时Spark SQL不断兼容不同…
Spark SQL 与传统 DBMS 的查询优化器 + 执行器的架构较为类似,只不过其执行器是在分布式环境中实现,并采用的 Spark 作为执行引擎. Spark SQL 的查询优化是Catalyst,其基于 Scala 语言开发,可以灵活利用 Scala 原生的语言特性很方便进行功能扩展,奠定了 Spark SQL 的发展空间. Catalyst 将 SQL 语言翻译成最终的执行计划,并在这个过程中进行查询优化.这里和传统不太一样的地方就在于, SQL 经过查询优化器最终转换为可执行的查询计划…
前言 第1章   为什么Spark SQL? 第2章  Spark SQL运行架构 第3章 Spark SQL组件之解析 第4章 深入了解Spark SQL运行计划 第5章  测试环境之搭建 第6章 Spark SQL之基础应用 第7章 ThriftServer和CLI 第8章 Spark SQL之综合应用 第9章 Spark SQL之调优 第10章 总结 Spark SQL中的两个重要概念Tree和Rule.然后介绍一下Spark SQL的两个分支sqlContext和hiveContext…
前言 第1章   为什么Spark SQL? 第2章  Spark SQL运行架构 第3章 Spark SQL组件之解析 第4章 深入了解Spark SQL运行计划 第5章  测试环境之搭建 第6章 Spark SQL之基础应用 第7章 ThriftServer和CLI 第8章 Spark SQL之综合应用 第9章 Spark SQL之调优 第10章 总结 Spark SQL中的两个重要概念Tree和Rule.然后介绍一下Spark SQL的两个分支sqlContext和hiveContext…
不多说,直接上干货! Spark Streaming的竞争对手 Storm 在Storm中,先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行.一个拓扑中包括spout和bolt两种角色,其中spout发送消息,负责将数据流以tuple元组的形式发送出去:而bolt则负责转换这些数据流,在bolt中可以完成计算.过滤等操作,bolt自身也可以随机…
不多说,直接上代码. ======================================= Iteration: 1= Input path: out/shortestpath/input.txt= Output path: out/shortestpath/1======================================2016-12-12 16:37:05,638 INFO [org.apache.hadoop.metrics.jvm.JvmMetrics] - In…
上一章节我们讲述了关于Guitar Pro 7的主界面的相关功能的介绍,对于初学作曲,又是吉他的初学者,刚刚接触Guitar Pro时,很多的功能,符号,工具都市不熟悉的,这样在创作,使用的过程中就会显得困难重重,本章节小编要和大家介绍的便是Guitar Pro里的组织小节这一部分,感兴趣的朋友可以一起进来学习了解哦. 小节的定义 在乐曲中,从一个强拍到下一个强拍之间的部分就是一个小节. 每两个小节之间用竖直的线将小节彼此分开,这条竖线就叫做"小节线".小节线的作用就是作为强拍的标记写…
本文属于<Linux Shell 系列教程>文章系列,该系列共包括以下 18 部分: Linux Shell系列教程之(一)Shell简介 Linux Shell系列教程之(二)第一个Shell脚本 Linux Shell系列教程之(三)Shell变量 Linux Shell系列教程之(四)Shell注释 Linux Shell系列教程之(五)Shell字符串 Linux Shell系列教程之(六)Shell数组 Linux Shell系列教程之(七)Shell输出 Linux Shell系列…
RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的实现过程. Spark Scala版本的Word Count程序如下: 1: val file = spark.textFile("hdfs://...") 2: val counts = file.flatMap(line => line.split(" "))…
前言 说明的是,本博文,是在以下的博文基础上,立足于它们,致力于我的大数据领域! http://kongcodecenter.iteye.com/blog/1231177 http://blog.csdn.net/u010376788/article/details/51337312 http://blog.csdn.net/arkblue/article/details/7897396 第一种:普通做法 首先,编号写WordCount.scala程序. 然后,打成jar包,命名为WC.jar.…
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 Flume 的整合. 二.推送式方法 在推送式方法 (Flume-style Push-based Approach) 中,Spark Streaming 程序需要对某台服务器的某个端口进行监听,Flume 通过 avro Sink 将数据源源不断推送到该端口.这里以监听日志文件为例,具体整合方式如…
1.rdd持久化 2.广播 3.累加器 1.rdd持久化 通过spark-shell,可以快速的验证我们的想法和操作! 启动hdfs集群 spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh 启动spark集群 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh 启动spark-shell s…