1.为什么正则化可以减少过拟合? //答:可以让模型参数变小,减小模型的方差. 在损失函数中加入正则项,在正则化时,如果参数lamda设置得足够大,那么就相当于权重系数W接近于0 ,就会减少很多隐藏单元的影响,降低模型的复杂度,将模型从过拟合到欠拟合,当然,其中有一个lamda是使模型处于最优中间状态的. 在这个例子中,当lamda增大时,W变小,所以随之Z变小,当激活函数使用Tanh时,若Z小,那么在接近0的区间内,模型就相当于是一个线性函数,模型简化. 2.Dropout(随机失活)正则化…