微软在上月宣布组建自己的 AI 研究小组.该小组汇集了超过 5000 名计算机科学家和工程师,加上微软内部研究部门,将共同挖掘 AI 技术. 与此同时,亚马逊,Facebook,Google,IBM 还有微软联合宣布成立一个非盈利组织「人工智能合作伙伴」.该组织将致力于推进人工智能研究,树立开发新的人工智能技术准则,以及加强公众对人工智能的认识. 而巨头们也纷纷拿出了自己的看家本领,Apple 的 Siri 利用自然语言处理来识别语音命令:Facebook 的深度学习面部识别算法能够快速准确地识…
核心提示:微软在 Office365.Azure 云.Dynamics365 上进行人工智能技术的部署,野心不小. 微软在2016年9月宣布组建自己的 AI 研究小组.该小组汇集了超过 5000 名计算机科学家和工程师,加上微软内部研究部门,将共同挖掘 AI 技术. 与此同时,亚马逊,Facebook,Google,IBM 还有微软联合宣 而巨头们也纷纷拿出了自己的看家本领,Apple 的 Siri 利用自然语言处理来识别语音命令:Facebook 的深度学习面部识别算法能够快速准确地识别出人脸…
Power BI Desktop 9月新功能摘要 Power BI 9月更新如期而至,这一次Power BI 又推出了新功能——聚合预览,它可在内存中无缝地存储汇总值,大大提高报告的性能.另外本月还包括PDF文件连接器的预览,这是UserVoice上请求最多的连接器; M 智能也是 Power BI 对高级查询编辑器的最大更新之一.话不多说,一起学习吧! 以下是9月重大更新的列表:让我们具体了解下: 报告 散点图中的点图布局支持 Power BI中的散点图有了实质性的更新.您现在可以在散点图的x…
微软亚洲研究院首席研究员孙剑 世界上最好计算机视觉系统有多精确?就在美国东部时间12月10日上午9时,ImageNet计算机视觉识别挑战赛结果揭晓——微软亚洲研究院视觉计算组的研究员们凭借深层神经网络技术的最新突破,以绝对优势获得图像分类.图像定位以及图像检测全部三个主要项目的冠军.同一时刻,他们在另一项图像识别挑战赛MS COCO(Microsoft Common Objects in Context,常见物体图像识别)中同样成功登顶,在图像检测和图像分割项目上击败了来自学界.企业和研究机构的…
编者按:人工智能的浪潮正如火如荼地袭来,未来人工智能将大有所为,人们的生活轨迹也正在技术不断向前推进的过程中逐渐改变.人工智能不是科研人员或开发人员的专属,微软希望能够将人工智能带给每个人,从开发者到数据科学家,从技术爱好者到学生,从而激发出更前沿更独到的技术,催生出更富有生命力的产品. 为了帮助大家更好地理解人工智能相关的服务.技术和产品,微软最新推出“人工智能大礼包”——在线学习课程:微软人工智能公开课.云技术学校:Azure School.人工智能前沿技术分享:AI讲堂,一网打尽人工智能领…
不错的 Tutorial: 从零到一学习计算机视觉:朋友圈爆款背后的计算机视觉技术与应用 | 公开课笔记 分享人 | 叶聪(腾讯云 AI 和大数据中心高级研发工程师) 整    理 | Leo 出    品 | 人工智能头条(公众号ID:AI_Thinker) 刚刚过去的五四青年节,你的朋友圈是否被这样的民国风照片刷屏?用户只需要在 H5 页面上提交自己的头像照片,就可以自动生成诸如此类风格的人脸比对照片,简洁操作的背后离不开计算机视觉技术和腾讯云技术的支持. 那么这个爆款应用的背后用到了哪些计…
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言理解的深度双向变换器预训练>,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量.异于最新语言表征模型,BERT基于所有层的左.右语境来预训练深度双向表征量.BERT是首个大批句子层面和词块层面任务中取得当前最优性能的表征模型,性能超越许多使用任务特定架构的系统,刷新11项NLP任务当前最…
NO1.目标检测 (分类+定位) 目标检测(Object Detection)是图像分类的延伸,除了分类任务,还要给定多个检测目标的坐标位置.      NO2.目标检测的发展 R-CNN是最早基于CNN的目标检测方法,然后基于这条路线依次演进出了SPPnet,Fast R-CNN和Faster R-CNN,然后到2017年的Mask R-CNN.     R-CNN即区域卷积神经网络,其提出为目标检测领域提供了两个新的思路:首先提出将候选子图片输入CNN模型用于目标检测和分割的方法,其次提出了…
一:由简至美的最佳论文(作者:何恺明  视觉计算组) [视觉机器人:个人感觉学习他的经典算法固然很重要,但是他的解决问题的思路也是非常值得我们学习的] 那是2009年4月24日的早上,我收到了一封不同寻常的email.发信人是CVPR 2009的主席们,他们说我的文章获得了CVPR 2009的最佳论文奖(Best Paper Award).我反复阅读这封邮件以确认我没有理解错误.这真是一件令人难以置信的事情. 北京灰霾照片的去雾结果 CVPR的中文名是计算机视觉与模式识别会议,是计算机视觉领域最…
Apple公司视觉设计规范 微软公司VI视觉系统 星巴克企业视觉规范手册 DELL品牌VI视觉手册 MTRADING品牌视觉规范 KFC视觉设计规范手册 麦当劳视觉规范 LEGO乐高玩具的品牌视觉规范手册 SONY视觉VI规范 NASA Adidas 福特 Ford Lexus汽车品牌视觉VI HEINEKEN啤酒品牌VI设计规范 Design.INC FEDEX快递公司视觉设计规范 谷歌Chrome浏览器视觉设计规范 Adobe公司视觉设计规范 Adobe Creative Cloud品牌设计…