2019-12-06 15:42:39 先暂时做个资料保存 要同时用两个红外相机,但是没有做硬件上的 时间戳同步,就是笔记本上同时插着两个相机. 两个topic发布各自相机的图像,然后要有个节点同时订阅两个topic并把两张图像拼接成一张图像再做处理. 直接搜 ros sub two topic结果都是2个callback函数,各自处理各自的topic,和想要的不太一样. 自己融合两个线程中时间戳不那么严格一致的数据太麻烦了 想要的是两张图片的时间戳如果相近,就当做是在同一时刻采集的,然后合成一…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch中可以利用: torch.nn.functional.adaptive_max_pool2d(input, output_size, return_indices=False) torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)…
PyTorch中的梯度累加 使用PyTorch实现梯度累加变相扩大batch PyTorch中在反向传播前为什么要手动将梯度清零? - Pascal的回答 - 知乎 https://www.zhihu.com/question/303070254/answer/573037166 这种模式可以让梯度玩出更多花样,比如说梯度累加(gradient accumulation) 传统的训练函数,一个batch是这么训练的: for i,(images,target) in enumerate(trai…
转自:https://mp.weixin.qq.com/s/RTv0cUWvc0kuXBeNoXVu_A 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据). class DataLoader(object): ... def __next__(self): if self.num_workers == 0: indices = next(self.sa…
文章目录 4.2.2 使用Tensorboard在 PyTorch 中进行可视化 Tensorboard 简介 Tensorboard 安装 页面 SCALAR IMAGES GRAPHS HISTOGRAMS PROJECTOR 使用 图像展示 更新损失函数 使用PROJECTOR对高维向量可视化 绘制网络结构 import torch import numpy as np import torch.nn as nn import torch.nn.functional as F from P…
不是python层面Tensor的剖析,是C层面的剖析. 看pytorch下lib库中的TH好一阵子了,TH也是torch7下面的一个重要的库. 可以在torch的github上看到相关文档.看了半天才发现pytorch借鉴了很多torch7的东西. pytorch大量借鉴了torch7下面lua写的东西并且做了更好的设计和优化. https://github.com/torch/torch7/tree/master/doc pytorch中的Tensor是在TH中实现的.TH = torch…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
转载于:Pytorch中的仿射变换(affine_grid) 参考:详细解读Spatial Transformer Networks (STN) 假设我们有这么一张图片:   下面我们将通过分别通过手动编码和pytorch方式对该图片进行平移.旋转.转置.缩放等操作,这些操作的数学原理在本文中不会详细讲解. 实现载入图片(注意,下面的代码都是在 jupyter 中进行): from torchvision import transforms from PIL import Image impor…