在tensflow中加载 fashion_mnist 数据集时,由于网络原因.可能会长时间加载不到或报错 此时我们可以通过离线的方式加载 1.首先下载数据集:fashion_mnist (下载后解压) 2.找到 '/python3.6/site-packages/tensorflow/python/keras/datasets/fashion_mnist.py' 中的fashion_mnist.py文件 (具体路径根据实际情况不同) 3.打开fashion_mnist.py文件 重新运行: OK…
回答多选项问题,使用softmax函数,对数几率回归在多个可能不同值上的推广.函数返回值是C个分量的概率向量,每个分量对应一个输出类别概率.分量为概率,C个分量和始终为1.每个样本必须属于某个输出类别,所有可能样本均被覆盖.分量和小于1,存在隐藏类别:分量和大于1,每个样本可能同时属于多个类别.类别数量为2,输出概率与对数几率回归模型输出相同. 变量初始化,需要C个不同权值组,每个组对应一个可能输出,使用权值矩阵.每行与输入特征对应,每列与输出类别对应. 鸢尾花数据集Iris,包含4个数据特征.…
1.softmax从零实现 from mxnet.gluon import data as gdata from sklearn import datasets from mxnet import nd,autograd # 加载数据集 digits = datasets.load_digits() features,labels = nd.array(digits['data']),nd.array(digits['target']) print(features.shape,labels.s…
1.机器学习算法(六)基于天气数据集的XGBoost分类预测 1.1 XGBoost的介绍与应用 XGBoost是2016年由华盛顿大学陈天奇老师带领开发的一个可扩展机器学习系统.严格意义上讲XGBoost并不是一种模型,而是一个可供用户轻松解决分类.回归或排序问题的软件包.它内部实现了梯度提升树(GBDT)模型,并对模型中的算法进行了诸多优化,在取得高精度的同时又保持了极快的速度,在一段时间内成为了国内外数据挖掘.机器学习领域中的大规模杀伤性武器. 更重要的是,XGBoost在系统优化和机器学…
用于分类  softmax 函数 手写数据识别:…
逻辑回归神经网络实现手写数字识别 如果更习惯看Jupyter的形式,请戳Gitthub_逻辑回归softmax神经网络实现手写数字识别.ipynb 1 - 导入模块 import numpy as np import matplotlib.pyplot as plt from PIL import Image from ld_mnist import load_digits %matplotlib inline 2 - 导入数据及数据预处理 mnist = load_digits() Extra…
获取和读取数据 初始化模型参数 实现softmax运算 定义模型 定义损失函数 计算分类准确率 训练模型 小结 import torch import torchvision import numpy as np import sys import random import torchvision.transforms as transforms sys.path.append('..') import d2lzh_pytorch as d2l 获取和读取数据 我们将使用Fahsion_MNI…
import numpy as np from keras.datasets import reuters from keras import layers from keras import models from keras import optimizers from keras.utils.np_utils import to_categorical import matplotlib.pyplot as plt def vectorize_data(x, dim = 10000): r…
准备材料 以所有的特征集作为variable进行像Bayes吖.SVM吖.决策树吖......分类.同时对数据进行预处理,选出相关度高的特征子集作为新的一组data进行分类(预处理的代码不必放出来). Classficiation Learner工具箱的使用 从应用程序(APP)栏下的机器学习和深度学习可以get. NEW Session,从工作空间导入数据集. Start Session. 选择分类器进行train. 结果 AUC 值越大,说明该模型的性能越好. 以CM1为例: 原始特征集.决…
一.二分类训练MNIST数据集练习 %matplotlib inlineimport matplotlibimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets import fetch_mldata mnist = fetch_mldata("MNIST original", data_home='MNIST_data/')X = mnist['data']y = mnist['target']di…