8个Python高效数据分析的技巧】的更多相关文章

一行代码定义List 下面是使用For循环创建列表和用一行代码创建列表的对比. x = [1,2,3,4] out = [] for item in x: out.append(item**2) print(out) [1, 4, 9, 16] # vs. x = [1,2,3,4] out = [item**2 for item in x] print(out) [1, 4, 9, 16] Lambda表达式 厌倦了定义用不了几次的函数? Lambda表达式是你的救星! Lambda表达式用于…
Python 高效编程技巧实战(2-1)如何在列表,字典, 集合中根据条件筛选数据 学习目标 1.学会使用 filter 借助 Lambda 表达式过滤列表.集合.元组中的元素: 2.学会使用列表解析.字典解析和集合解析: 3.学会使用随机数的库生成测试用例: 4.学会使用列表生成式创建列表. 列表生成式即 List Comprehensions ,是 Python 内置的非常简单却强大的可以用来创建 list 的生成式. 知识点与例题讲解 下面我们给出几种在列表.字典集合中筛选数据的解决方案:…
提高Python数据分析速度的八个小技巧 01 使用Pandas Profiling预览数据 这个神器我们在之前的文章中就详细讲过,使用Pandas Profiling可以在进行数据分析之前对数据进行快速预览,拿我们使用过很多次的NBA数据集来说,导入数据集之后 一行代码就生成丰富的交互式数据EDA报告 可以看到,除了之前我们需要的一些描述性统计数据,该报告还包含以下信息: 类型推断:检测数据帧中列的数据类型. 要点:类型,唯一值,缺失值 分位数统计信息,例如最小值,Q1,中位数,Q3,最大值,…
原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化.扩展以及文档相关的事情通常需要消耗 80% 的工作量.优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率. 改进算法,选择合适的数据结构 一个良好的算法能够对性能起到关键作用,因此性能改进的首要点是对算法的改进.在算法的时间复杂度排序上依次是: O(1) -> O(lg n) -> O(…
总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间. 此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和…
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行…
第2版针对Python 3.6进行全面修订和更新,涵盖新版的pandas.NumPy.IPython和Jupyter,并增加大量实际案例,可以帮助高效解决一系列数据分析问题. 第2版中的主要更新了Python第三方发布版Anaconda和其他所需Python包的安装指引: 更新pandas库到2017年的新版: 新增一章关于更多高级pandas工具和一些使用提示:新增statsmodels和scikit-learn的简明使用介绍. 学习参考: <利用Python进行数据分析(第二版)>高清中文…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
点击获取提取码:hi2j 内容简介 [名人推荐] "科学计算和数据分析社区已经等待这本书很多年了:大量具体的实践建议,以及大量综合应用方法.本书在未来几年里肯定会成为Python领域中技术计算的权威指南." --Fernando Pérez 加州大学伯克利分校 研究科学家, IPython的创始人之一 [内容简介] 还在苦苦寻觅用Python控制.处理.整理.分析结构化数据的完整课程?本书含有大量的实践案例,你将学会如何利用各种Python库(包括NumPy.pandas.matplo…