pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; ][],ans[]; ]={,,,,-}; ]={,,-,,}; bool Guass(int N) { rep(i,,N-){ int mark=i; rep(j,i+,N-) if…
任意门:http://poj.org/problem?id=1681 Painter's Problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7667   Accepted: 3624 Description There is a square wall which is made of n*n small square bricks. Some bricks are white while some bric…
http://poj.org/problem?id=1681 题意:有一块只有黄白颜色的n*n的板子,每次刷一块格子时,上下左右都会改变颜色,求最少刷几次可以使得全部变成黄色. 思路: 这道题目也就是要处理自由变元,如果自由变元为0,那么刷法是唯一的,如果有多个自由变元,那么可以有多种刷法,需要枚举处理. 借鉴了kuangbin大神的高斯消元模板,写得真的是好. #include<iostream> #include<algorithm> #include<cstring&g…
Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格染成黄色时,同时会把周围的方格也染成黄色.(这和1222的开关一样的关联关系)问最后可以将square全部染成黄色的最小染色方格数? 思路: 1.直接预处理出增广矩阵,和1222不同的是里面有最优解的条件,贪心的思想是把自由变元看成是没染色的,但是其他非自由变元(除去自由维度之外的变量)是可以通过自由变元的取…
任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7676   Accepted: 3036 Description The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (pro…
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被操作一次,记得a[i][i] = 1是必须的,因为开关i操作一次,本身肯定会变化一次. 所以有n个开关,就有n条方程, 每个开关的操作次数总和是:a[i][1] + a[i][2] + ... + a[i][n] 那么sum % 2就代表它的状态,需要和(en[i] - be[i] + 2) % 2…
pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<=b;i++) using namespace std; ][],ans[]; ]={,,,,-}; ]={,,-,,}; void Guass() { rep(i,,){ int mark=i;…
题目链接 题意: 输入提供9个钟表的位置(钟表的位置只能是0点.3点.6点.9点,分别用0.1.2.3)表示.而题目又提供了9的步骤表示可以用来调正钟的位置,例如1 ABDE表示此步可以在第一.二.四.五个钟调正,如原来是0点,那么调正后为3点.问经过那些步骤可以导致9个钟的位置都在0点. 分析: 这个本来是一个高斯消元的题目,但是 听说周期4不是素数, 求解过程中不能进行取余.因为取余可能导致解集变大. 不过也有用高斯消元做的,下面是用高斯消元的分析 ” Discuss也有人讨论了,4不是质数…
可以发现具有非常多的方程, 然后高斯消元就能85分 然而我们发现这些方程组成了一些环, 我们仅仅设出一部分变量即可获得N个方程, 就可以A了 trick 合并方程 #include <cstdio> #include <algorithm> #include <cstring> #include <queue> #include <iostream> #include <cmath> #define ldb long double #…
http://poj.org/problem?id=1222 竟然我理解了两天..... 首先先来了解异或方程组(或者说mod2方程组,modk的话貌似可以这样拓展出来) 对于一些我们需要求出的变量a[1~n],我们现在知道n个方程组(有解的情况下),每个方程均是类似原版消元那样带了个系数的,只不过这个系数只有0和1,那么我们第i个方程用x[i, 1~n]表示a[1~n]的系数,然后x[n+1]为这个方程的右式 那么这些方程组是这样的 (x[1,1]*a[1])^(x[1,2]*a[2])^..…