Java基于opencv实现图像数字识别(三)-灰度化和二值化 一.灰度化 灰度化:在RGB模型中,如果R=G=B时,则彩色表示灰度颜色,其中R=G=B的值叫灰度值:因此,灰度图像每个像素点只需一个字节存放灰度值(又称强度值.亮度值),灰度范围为0-255.一般常用的是加权平均法来求像素点的灰度值,opencv开发库所采用的一种求灰度值算法如下: :)Gray = 0.072169 * B + 0.715160 * G + 0.212671 * R 有两种方式可以实现灰度化,如下 方式1 @Te…
Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要是表格中数字的识别,但这个不是重点.重点是通过这个我们可以举一反三,来实现我们自己的业务. 图像的识别主要分为两步:图片预处理和图像识别:这两步都很重要 图像预处理: 1. 图像灰度化:二值化 2. 图像降噪,去除干扰线 3. 图像腐蚀.膨胀处理 4. 字符分割 5. 字符归一化 图像识别: 1.…
Java基于opencv实现图像数字识别(一) 最近分到了一个任务,要做数字识别,我分配到的任务是把数字一个个的分开:当时一脸懵逼,直接百度java如何分割图片中的数字,然后就百度到了用BufferedImage这个类进行操作:尝试着做了一下,做到灰度化,和二值化就做不下去了:然后几乎就没有啥java的资料了,最多的好像都是c++,惹不起.惹不起...... 我也想尝试着用c++做一下,百度到了c++基于opencv来做图像识别的:但是要下vs啊,十几个g呢,我内存这么小,配置这么麻烦,而且vs…
Java基于opencv实现图像数字识别(五)-投影法分割字符 水平投影法 1.水平投影法就是先用一个数组统计出图像每行黑色像素点的个数(二值化的图像): 2.选出一个最优的阀值,根据比这个阀值大或小,用一个数组记录相应Y轴的坐标: 3.因为是水平切割我们只需要Y轴的切割点即可,宽度默认图像的宽,高度可以用相邻的切割点相减得到: 4.优化切割点,把切割点靠近的都清除掉 5.设置感应区的区域,切割图片 垂直投影法和水平投影法类似,对比思考一下 因为我做的是表格的切割,你如果想实现验证码的切割,或者…
Java基于opencv实现图像数字识别(四)-图像降噪 我们每一步的工作都是基于前一步的,我们先把我们前面的几个函数封装成一个工具类,以后我们所有的函数都基于这个工具类 这个工具类呢,就一个成员变量Mat,非常的简单,这里给出代码 public class ImageUtils { private static final int BLACK = 0; private static final int WHITE = 255; private Mat mat; /** * 空参构造函数 */…
腐蚀:去除图像表面像素,将图像逐步缩小,以达到消去点状图像的效果:作用就是将图像边缘的毛刺剔除掉 膨胀:将图像表面不断扩散以达到去除小孔的效果:作用就是将目标的边缘或者是内部的坑填掉 使用相同次数的腐蚀和膨胀,可以使目标表面更平滑:但也有场景限制,就是如果去噪不干净的话,会出现意想不到的结果,尽量别使用 大概的效果,适合降噪比较干净的图 // 图像腐蚀/膨胀处理 public void erodeImg() { Mat outImage = new Mat(); // size 越小,腐蚀的单位…
前几天接触了图像的处理,发现用OPencv处理确实比較方便.毕竟是非常多东西都封装好的.可是要研究里面的东西,还是比較麻烦的,首先,你得知道图片处理的一些知识,比方腐蚀,膨胀,仿射,透射等,还有非常多算法,傅里叶.积分,卷积,频谱,加权. ..,反正我看了半天,是云里雾里的.所以就想先就笼统的过一遍,以后遇到了再详细分析,比較这方面的基础没那么扎实. 先来记录下眼下学习到的一些知识. 首先是图像的灰度处理: CV_LOAD_IMAGE_GRAYSCALE,这是最简单之间的办法,在加载图像时直接处…
转载:http://www.chinasb.org/archives/2013/01/5053.shtml 1: package org.chinasb.client; 2: 3: import java.awt.Color; 4: import java.awt.image.BufferedImage; 5: import java.io.File; 6: import java.io.IOException; 7: 8: import javax.imageio.ImageIO; 9: 10…
图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度…
更多的时候,我们得到的图像不可能是正的,多少都会有一定的倾斜,就比如下面的 我们要做的就是把它们变成下面这样的 我们采用的是寻找轮廓的思路,来矫正图片:只要有明显的轮廓都可以采用这种思路 具体思路: 1.先用opencv提供的canny函数,进行一次边缘检测 2.再用opencv提供的findContours函数,寻找图像的轮廓,从中间结果种,找到最大的轮廓,就是我们图像的最外面的轮廓 3.得到最终轮廓后,计算矩形轮廓与水平的夹角,然后旋转图像 4.最后我们在从旋转后的图像中,把我们感兴趣的切割…