TSNE提供了一种有效的数据降维方式,让我们可以在2维或3维的空间中展示聚类结果. # -*- coding: utf-8 -*- from __future__ import unicode_literals from sklearn.manifold import TSNE import pandas as pd import matplotlib.pyplot as mp inputfile = 'data/consumption_data.xls' outputfile = 'tmp/d…
目录 1.概述 1.1 什么是TSNE 1.2 TSNE原理 1.2.1入门的原理介绍 1.2.2进阶的原理介绍 1.2.2.1 高维距离表示 1.2.2.2 低维相似度表示 1.2.2.3 惩罚函数 1.2.2.4 为什么是局部相似性 1.2.2.5 为什么选择高斯和t分布 2 python实现 参考内容 1.概述 1.1 什么是TSNE TSNE是由T和SNE组成,T分布和随机近邻嵌入(Stochastic neighbor Embedding). TSNE是一种可视化工具,将高位数据降到2…
转自:https://blog.csdn.net/u012162613/article/details/45920827 https://www.jianshu.com/p/d6e7083d7d61 1.思想 t-SNE(t-distributed stochastic neighbor embedding)是用于降维的一种机器学习算法,是由 Laurens van der Maaten 和 Geoffrey Hinton在08年提出来. 此外,t-SNE 是一种非线性降维算法,非常适用于高维数…
监督学习算法需要标记的样本(x,y),但是无监督学习算法只需要input(x). 您将了解聚类 - 用于市场分割,文本摘要,以及许多其他应用程序. Principal Components Analysis, 经常用于加快学习算法,同时对于数据可视化以帮助你对数据的理解也有很大的帮助. Unsupervised learning Introduction supervised learning:在前面几课我们学习的都是属于监督性学习的内容,包括回归和分类,主要特点就是我们使用的数据集都是类似(x…
2013 基于数据降维和压缩感知的图像哈希理论与方法 唐振军 广西师范大学 多元时间序列数据挖掘中的特征表示和相似性度量方法研究 李海林 华侨大学       基于标签和多特征融合的图像语义空间学习技术研究 管子玉 西北大学       非负矩阵分解中维数约减问题研究 赵金熙 南京大学 58     大数据环境下高维数据流挖掘算法及应用研究 冯林 大连理工大学       面向高维信息的非线性维数约减问题研究 高小方 山西大学       基于支持向量机的增量式强化学习技术及其应用研究 伏玉琛…
讲授LDA基本思想,寻找最佳投影矩阵,PCA与LDA的比较,LDA的实际应用 大纲: 非线性降维算法流形的概念流形学习的概念局部线性嵌入拉普拉斯特征映射局部保持投影等距映射实验环节 非线性降维算法: 上节介绍了经典的PCA算法,它虽然在很多问题上取得了成功,但是它有它的局限性,因为在现实世界中我们要处理的很多数据它是非线性的,而PCA本身是一个线性化的算法,用线性算法处理非线性问题是不太合适的,所以我们要有非线性的降维技术. 通过一个非线性的函数将x映射到另一个空间中去,得到一个向量y,x的维度…
鸟枪换炮,利用python3对球员做大数据降维(因子分析得分),为C罗找到合格僚机 原文转载自「刘悦的技术博客」https://v3u.cn/a_id_176 众所周知,尤文图斯需要一座欧冠奖杯,C罗也还想再拿一座欧冠奖杯,为自己的荣誉簙上锦上添花.意甲霸主在意甲虽然风生水起,予取予求,但是在今年欧冠1/8决赛赛场上,被法甲球队里昂所淘汰,痛定思痛,球队解雇了主教练萨里,签约名宿皮尔洛,但是要想在欧冠赛场上夺冠,这还不够,球队还需要什么?没错,需要一名强力中锋,在正印中锋伊瓜因难堪大用的情况下,…
利用 t-SNE 高维数据的可视化  具体软件和教程见: http://lvdmaaten.github.io/tsne/  简要介绍下用法: % Load data load ’mnist_train.mat’ ind = randperm(size(train_X, 1)); train_X = train_X(ind(1:5000),:); train_labels = train_labels(ind(1:5000)); % Set parameters no_dims = 2; ini…
本笔记为Coursera在线课程<Machine Learning>中的数据降维章节的笔记. 十四.降维 (Dimensionality Reduction) 14.1 动机一:数据压缩 本小节主要介绍第二种无监督学习方法:dimensionality reduction,从而实现数据的压缩,这样不仅可以减少数据所占磁盘空间,还可以提高程序的运行速度.如下图所示的例子,假设有一个具有很多维特征的数据集(虽然下图只画出2个特征),可以看到x1以cm为单位,x2以inches为单位,它们都是测量长…
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分解,英文全称为Singular Value Decomposition.首先我们要明白,SVD是众多的矩阵分解技术中的一种,矩阵分解方式很多,如三角分解(LU分解.LDU分解.乔列斯基分解等).QR分解及这里所说的奇异值分解:其次,singular是奇特的.突出的.非凡的意思,从分解的过程及意义来看…
微信小程序给我们提供了一个很好的开发平台,可以用于展现各种数据和实现丰富的功能,本篇随笔介绍微信小程序结合后台数据管理实现商品数据的动态展示.维护,介绍如何实现商品数据在后台管理系统中的维护管理,并通过小程序的请求Web API 平台获取JSON数据在小程序界面上进行动态展示. 1.整体性的架构设计 我们整体性的架构设计,包含一个Web管理后台.一个Web API统一接口层.当然还有数据库什么,另外还有一个小程序客户端.整个架构体系还是以我之前随笔介绍的<整合微信小程序的Web API接口层的架…
网上看到关于数据降维的文章不少,介绍MDS的却极少,遂决定写一写. 考虑一个这样的问题.我们有n个样本,每个样本维度为m.我们的目标是用不同的新的k维向量(k<<m)替代原来的n个m维向量,使得在新的低维空间中,所有样本相互之间的距离等于(或最大程度接近)原空间中的距离(默认欧氏距离). 举个栗子:原来有3个4维样本(1,0,0,3),(8,0,0,5),(2,0,0,4),显然我们可以用三个新的二维样本(1,3),(8,5),(2,4)来保持维度变小并相互之间距离不变. 那么问题来了,如果不…
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actionhttps://github.com/pbharrin/machinelearninginaction ****************************…
spring-mvc实现模拟数据到网页展示过程代码 先看看我们的3种模拟数据到网页展示的思路图: 1.当mybatis的环境配置完成.一个动态Web项目建立好.开始导入jar包. -spring的aop,aspects,context,beans,core,expression,jdbc,tx,web,webmvc jar包导入 -log4j 核心包2个 -aopjar包:aopaliance-1.0jar,aspectjweaver-1.8.10jar -jstl.jar,standard.j…
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Principal Component Analysis),主成分分析,是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 二.PCA的用途及原理: 用途:数据降维 原理:线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,…
数据降维(Dimensionality reduction) 应用范围 无监督学习 图片压缩(需要的时候在还原回来) 数据压缩 数据可视化 数据压缩(Data Compression) 将高维的数据转变为低维的数据, 这样我们存储数据的矩阵的列就减少了, 那么我们需要存储的数据就减少了 数据可视化 数据可视化是非常重要的, 通过可视化数据可以发现数据的规律, 但是大多数时候我们到的数据是高维度的, 可视化很困难, 采用数据降维可以将数据降到二维进行数据可视化 加快机器学习算法的速度 维度少了程序…
注:因为公式敲起来太麻烦,因此本文中的公式没有呈现出来,想要知道具体的计算公式,请参考原书中内容 降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中 1.主成分分析(PCA) 将n维样本X通过投影矩阵W,转换为K维矩阵Z 输入:样本集D,低维空间d 输出:投影矩阵W 算法步骤: 1)对所有样本进行中心化操作 2)计算样本的协方差矩阵 3)对协方差矩阵做特征值分解 4)取最大的d个特征值对应的特征向量,构造投影矩阵W 注:通常低维空间维数d的选取有两种方法:1)通过交叉验证法选…
一.商品类别数据和VUE展示 1.商品类别数据接口 将商品类别数据展示出来,视图(views.py)代码如下: class CategoryViewset(mixins.ListModelMixin,viewsets.GenericViewSet): """ list: 商品分类列表数据 """ queryset = GoodsCategory.objects.all() serializer_class = GoodsCategorySeria…
1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征.PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的.其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2…
讲授数据降维原理,PCA的核心思想,计算投影矩阵,投影算法的完整流程,非线性降维技术,流行学习的概念,局部线性嵌入,拉普拉斯特征映射,局部保持投影,等距映射,实际应用 大纲: 数据降维问题PCA的思想最佳投影矩阵向量降维向量重构实验环节实际应用 数据降维问题: 为什么需要数据降维?①高维数据不易处理,机器学习和模式识别中高维数据不太好处理,如人脸图像32*32,1024维向量,维度太高效率低.影响精度.②不能可视化,1024维是无法可视化的.③维数灾难问题,开始增加维度算法预测精度会提升,但再继…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_36380516/article/details/78668199上一篇介绍了使用jsp完成数据的页面展示 ,但是springboot并不推荐使用jsp,会产生很多问题.官方推荐使用thymeleaf,这里我们将上一篇的jsp页面展示修改为使用thymeleaf,通过对比来熟悉thymeleaf,其实改动的地方并不大. 第一篇…
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
目录结构 1.前言 2.表数据的标题默认展示的数据格式是[模型类名 object(主键名)]的相关信息 3.优化表数据的标题展示的数据格式是[改成我们想要展示的数据格式]的相关完整操作步骤 3.1.第一步:修改模型类[Person]的代码内容 3.2.第二步:重启django项目[helloworld]的服务 3.3.第三步:重新成功登陆admin管理后台 3.4.第四步:查看被成功优化后的[hello_person]表表数据的标题展示的数据格式 1.前言 admin管理后台里的每张数据表的每条…
在Vue前端项目中,我这里主要是基于Vue+Element的开发,大多数情况下,我们利用Element的表格组件就可以满足大多数情况的要求,本篇随笔针对表格的展示和编辑处理,综合性的介绍几款表格组件的展示和处理效果,其中包括Element的el-table组件,以及其他第三方类组件,如vue-easytable.vue-willtable,以及vxe-table,针对性的对比相关的差异. 1.el-table表格组件 这个是Element的表格组件,使用参考地址如下:https://elemen…
写在前面:本来这篇应该是上周四更新,但是上周四写了一篇深度学习的反向传播法的过程,就推迟更新了.本来想参考PRML来写,但是发现里面涉及到比较多的数学知识,写出来可能不好理解,我决定还是用最通俗的方法解释PCA,并举一个实例一步步计算,然后再进行数学推导,最后再介绍一些变种以及相应的程序.(数学推导及变种下次再写好了) 正文: 在数据处理中,经常会遇到特征维度比样本数量多得多的情况,如果拿到实际工程中去跑,效果不一定好.一是因为冗余的特征会带来一些噪音,影响计算的结果:二是因为无关的特征会加大计…
1.什么是非负矩阵分解? NMF的基本思想可以简单描述为:对于任意给定的一个非负矩阵V,NMF算法能够寻找到一个非负矩阵W和一个非负矩阵H,使得满足 ,从而将一个非负的矩阵分解为左右两个非负矩阵的乘积.如下图所示,其中要求分解后的矩阵H和W都必须是非负矩阵. 分解前后可理解为:原始矩阵的列向量是对左矩阵中所有列向量的加权和,而权重系数就是右矩阵对应列向量的元素,故称为基矩阵,为系数矩阵.一般情况下的选择要比小,即满足,这时用系数矩阵代替原始矩阵,就可以实现对原始矩阵进行降维,得到数据特征的降维矩…
1.什么是LDA? LDA线性判别分析也是一种经典的降维方法,LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术.LDA的思想可以用一句话概括,就是“*投影后类内方差最小,类间方差最大*”. 什么意思呢? 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 可能还是有点抽象,我们先看看最简单的情况.假设我们有两类数据分别为红色和蓝色,如…
PCA(Principal Component Analysis)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维.网上关于PCA的文章有很多,但是大多数只描述了PCA的分析过程,而没有讲述其中的原理.这篇文章的目的是介绍PCA的基本数学原理,帮助读者了解PCA的工作机制是什么. 当然我并不打算把文章写成纯数学文章,而是希望用直观和易懂的方式叙述PCA的数学原理,所以整个文章不会引入严格的数学推导.希望读者在…
Principal Component Analysis 算法优缺点: 优点:降低数据复杂性,识别最重要的多个特征 缺点:不一定需要,且可能损失有用的信息 适用数据类型:数值型数据 算法思想: 降维的好处: 使得数据集更易使用 降低很多算法计算开销 去除噪声 使得结果易懂 主成分分析(principal component analysis,PCA)的思想是将数据转换到新的坐标系,这个坐标系的选择是由数据本身决定的,第一维是原始数据中方差最大的方向,第二个是与第一维正交且方差最大的,一直重复..…
1.使用svg实现组态画面和动态数据展示 通过js的定时器调用webservice方法获取数据后更新节点数据 /// <summary>启动定时刷新</summary> function Start() { InitSvgElement(); this.timer = setInterval("GetTagValues()", 1000); } /// <summary>启动定时刷新</summary> function Stop() {…