生成器对应于认知器的逆过程. 这一切的起源都是当初一个极具启发性的思想:Sleep-wake algorithm——人睡眠时整理记忆做梦,是一个生成的过程,即通过最终的识别结果企图恢复接收到的刺激,当然,恢复得到的是梦境而已,那个梦中的视觉.听觉.触觉以及嗅觉等等全和现实有关却也无关.有关是认知层次的有关,无关是表现出的内容的无关.sleep时进行生成,wake时进行认知.这个过程交替进行就构成了sleep-wake算法.它是一个宽松模型,或者说是一个Monte Carlo采样的EM逼近训练过程…
Systems and methods are provided to manage risk associated with access to information within a given organization. The overall risk tolerance for the organization is determined and allocated among a plurality of subjects within the organization. Allo…
本文首发自我的公众号:成都有娃儿,这里把三篇文章合一,方便阅读. 现在相当多的公司或者团队都在使用git来做版本控制,结合我这些年的工作经历,我总结了一些个人认为不错的使用规范和习惯. 脱离背景来讲规范有点不切实际,为了更好的阐述不同公司的做法,我们假设存在三种不同情况的公司和项目,分别来说说可能出现的最佳实践. 第一种情况是创业型公司,基于Scrum的方式来做敏捷开发.假设有多人需要在同一个分支A上进行开发,那么为了更好的协作,可以采取如下的git操作: 当完成编程工作后,先pull当前分支的…
Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouget-Abadie, M. Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, Yoshua BengioSources:2014, NIPSOther:26700 Citations, 41 ReferencesCode…
How to Train a GAN? Tips and tricks to make GANs work 转自:https://github.com/soumith/ganhacks While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train th…
GAN这一概念是由Ian Goodfellow于2014年提出,并迅速成为了非常火热的研究话题,GAN的变种更是有上千种,深度学习先驱之一的Yann LeCun就曾说,"GAN及其变种是数十年来机器学习领域最有趣的idea".那么什么是GAN呢?GAN的应用有哪些呢?GAN的原理是什么呢?怎样去实现一个GAN呢?本文将一一阐述.具体大纲如下: 1.什么是GAN? 1.1 对抗思想--啵啵鸟与枯叶蝶 1.2 GAN思想--画画的演变 1.3 零和博弈(zero-sum game) 1.4…
一篇介绍GAN应用的文章.今后GAN模型学习的主要内容. 中文链接:萌物生成器:如何使用四种GAN制造猫图 原文链接:https://ajolicoeur.wordpress.com/cats/ 项目 GitHub:https://github.com/AlexiaJM/Deep-learning-with-cats 我尝试使用几种对抗生成网络(GAN)来生成猫脸,其中包括 DCGAN.WGAN 和 WGAN-GP,以及低和高分辨率.训练模型则使用 CAT 数据集(是的,真的有这么个东西).这一…
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263评论 0喜欢 7 原始GAN Goodfellow和Bengio等人发表在NIPS 2014年的文章Generative adversary network,是生成对抗网络的开创文章,论文思想启发自博弈论中的二人零和博弈.在二人零和博弈中,两位博弈方的利益之和为零或一个常数,即一方有所得,另一方必有…
论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈给生成器 srgan论文是建立在gan基础上的,利用gan生成式对抗网络,将图片重构为高清分辨率的图片. github上有开源的srgan项目.由于开源者,开发时考虑的问题更丰富,技巧更为高明,导致其代码都比较难以阅读和理解. 在为了充分理解这个论文.这里结合论文,开源代码,和自己的理解重新写了个s…
Good Semi-supervised Learning That Requires a Bad GAN 恢复博客更新,最近没那么忙了,记录一下学习. Intro 本文是一篇稍微偏理论的半监督学习的文章,通过证明一个能够生成非目标分布的.低样本密度的样本的生成器,对半监督学习的效果有很大的提升,这样的生成器作者称之为Complement Generator,而提升的原因是生成的bad样本填充了特征空间的低密度区域,从而使得分类的分类面在低密度区域,从而避免了分类面穿过流形的情况,因而能够提升分…