动物心率与体重的模型 动物消耗的能量p主要用于维持体温,而体内热量通过其表面积S散失,记动物体重为w,则\(P \propto S \propto w^{\alpha}\).又\(P\)正比于血流量\(Q\),而\(Q=wr\),其中\(q\)是动物每次心跳泵出的血流量,\(r\)为心率.假设\(q\)与\(r\)成正比,于是\(P \propto wr\).于是有\(r \propto w^{\alpha-1}=w^a\),有\(r=kw^a+b\). import numpy as np i…
经过前面六天的文章分享,相信大家对数学模型的相关准备.学习都有了更新的认识,希望大家能从中有所收获,以便更高效地准备比赛和学习数学模型,本文是数学建模经验谈的最后一天:临近比赛的准备工作,希望在临近比赛的时候能够助推大家获得最后的提升!下面是正文. 学习数模到最后参加数模比赛是一个持久战,在这持续很长的时间里除了坚持,有恒心,有毅力之外,还有一点重要的,就是状态的调整,良好的状态是成功的保证.比赛前,我们在知识,心态,身体状态上都应该达到一个比较协调的状态,才能有能力应对三天三夜的挑战,下面就我…
这也许是我大学生涯最后一次参加数学建模比赛了吧,这次我们选择的问题是E题,以下是我们解题时候的一些思路.很多不易体现的项目产生对环境造成影响的指标可以由一些等同类型的指标来代替,如土地.森林植被被破环,可以根据生产率变动方法和置换成本法进行核算,大气污染可以用疾病成本法等来体现. 题目(谷歌翻译版本) 经济理论经常忽视其决策对生物圈的影响,或者为其需求承担无限的资源或能力.这种观点存在缺陷,现在环境面临着后果.生物圈提供了许多自然过程来维持健康和可持续的人类生活环境,这被称为生态系统服务.例子包…
在本文中,我想将经典数学建模和机器学习之间建立联系,它们以完全不同的方式模拟身边的对象和过程.虽然数学家基于他们的专业知识和对世界的理解来创建模型,而机器学习算法以某种隐蔽的不完全理解的方式描述世界,但是在大多数情况下甚至比专家开提出的数学模型更准确.然而,在许多应用程序(如医疗保健,金融,军事)中,我们需要清晰可解释的决策,而机器学习算法,特别是深度学习模型并不是这样设计的. 本文将回顾所期望模型的的主要特点,"经典"数学模型和机器学习模型的优点和缺点,并展示一个结合了两种模型特点的…
图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 NetworkX 图论与复杂网络工具包的基本功能和典型算法. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 图论 1.1 图论是什么 图论[Graph Theory]以图为研究对象,是离散数学的重要内容.图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机…
今天在阅读数学建模的时候看到了差分那章 其中有一个用matlab求线性的代码,这里我贴出来 这里我送上 Python代码 In [39]: import numpy as np ...: from scipy.optimize import nnls ...: x = np.array([[1,2,3,4,5],[1,1,1,1,1]]) ...: x = x.T ...: y = np.array([11,12,13,15,16]) ...: nnls(x,y) ...: Out[39]: (…
为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137730824/article/details/39206823 对于任意文件夹的同一格式的图片的批量读取:http://blog.csdn.net/haizimin/article/details/39646595 关于MATLAB在微分/偏微分方程以及其他高等数学问题中的应用. 关于MATLAB在…
今天进入数学建模经验谈第六天:组队建议和比赛流程建议 数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率. 三个人的分工可以分为这几个方面: 数学员:学习过很多数模相关的方法.知识,无论是对实际问题还是数学理论都有着比较敏感的思维能力,知道一个问题该怎样一步步经过化简而变为数学问题,而在数学上又有哪些相关的方法能够求解,他可以不会编程,但是要精通算法,能够一定程度上帮助程序员想算法,总之,数学员要做到的是能够把一个问…
下面进入数学建模经验谈第五天:怎样问数学模型问题 写这一篇的目的主要在于帮助大家能更快地发现问题和解决问题,让自己的模型思路有一个比较好的形成过程. 在我们学习数学模型.准备比赛的时候,经常会遇到各种各样的问题,有关于算法的,模型建立的,还有直接的题目思路,我在做数学中国版主这些天里,也经常力所能及地解决大家提出的各种问题,既有同学是一句简单的话:求XX算法相关资料,也有的干脆摆上来一道校赛题,我很乐意和负责地为大家解决疑问,也对支持数学中国,相信数学中国的各位同学表示感谢! 同时,也有一些在问…
本文进入到数学建模七日谈第四天:数学模型分类浅谈 大家常常问道,数学模型到底有哪些,分别该怎么学习,这样能让我们的学习有的放矢,而不至于没了方向.我想告诉大家,现实生活中的问题有哪些类,数学模型就有哪些类,因为说到底,数学模型是用来解决实际问题的,解决那些当我们缺乏某一方面足够的经验时,定量化地依靠数字来解决问题的办法. 于是,们可以想想,在现实生活中,我们能够遇到哪些需要定量化解决的问题,而这些问题能否利用数学工具加以解决. 优化类问题:我们常常需要对某些行为进行决策,这些是我们可以控制的因素…