题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2616 把相同高度的连续一段合成一个位置(可能不需要?),用前缀和维护宽度. 然后每次找区间里最低的那个点(ST表)作为根,递归左右孩子,构建笛卡尔树. dp[ cr ][ j ] 表示在 cr 的子树里选择 j 个点的方案数. 自己本来写的是同时枚举 cr 这个点.ls .rs 各贡献了多少个车,结果TLE. 看看题解,发现这样比较好(至多 \( n^3 \) ),就是先 \( dp[ c…
BZOJ SPOJ 直观的想法是构建笛卡尔树(每次取最小值位置划分到两边),在树上DP,这样两个儿子的子树是互不影响的. 令\(f[i][j]\)表示第\(i\)个节点,放了\(j\)个车的方案数. 设\(v\)是\(i\)的一个儿子,对于子树部分的转移,有\[f'[i][j]=\sum_{k\leq j}f[v][j-k]f[i][k]\] 求完子树贡献后,对于\(i\)节点代表的矩形,设高度是\(h\)宽度是\(w\),有\[f'[i][j]=\sum_{k\leq j}f[i][j-k]\…
[BZOJ2616]SPOJ PERIODNI Description Input 第1行包括两个正整数N,K,表示了棋盘的列数和放的车数. 第2行包含N个正整数,表示了棋盘每列的高度. Output 包括一个非负整数,表示有多少种放置的方案,输出答案mod 1000000007后的结果即可. Sample Input 5 2 2 3 1 2 4 Sample Output 43 HINT 对于100%的数据,有 N≤500,K≤500,h[i] ≤1000000. 题解:一看题就感觉应该是单调…
考虑建一棵小根堆笛卡尔树,即每次在当前区间中找到最小值,以最小值为界分割区间,由当前最小值所在位置向两边区间最小值所在位置连边,递归建树.那么该笛卡尔树中的一棵子树对应序列的一个连续区间,且根的权值是这段区间的最小值. 在笛卡尔树上跑树形dp.设f[i][j]为在i子树对应棋盘中放j个车的方案数,且棋盘中只考虑这段区间在根的父亲高度上方的部分.转移考虑合并两棵子树再在新增加的矩形部分放车即可,捣鼓一下组合数. #include<iostream> #include<cstdio>…
不连续的处理很麻烦 导致序列DP又找不到优秀的子问题 自底向上考虑? 建立小根堆笛卡尔树 每个点的意义是:高度是(自己-father)的横着的极大矩形 子问题具有递归的优秀性质 f[i][j]i为根子树,放j个 儿子背包合并 考虑本层的矩形放多少个 枚举一共放t个,本层放j个 对于子树里的放置的t-j个,不论怎么放,一定占据了t-j列,剩下W[i]-(t-j)个位置 转移是: https://blog.csdn.net/qq_39972971/article/details/79359547 当…
题目链接 要求的和.最大值.最小值好像都可以通过O(n)的树形DP做,总询问点数<=2n. 于是建虚树就可以了.具体DP见DP()函数,维护三个值sum[],mx[],mn[]. sum[]要开longlong!.. //108172kb 2564ms(又是Rank4...) #include <cstdio> #include <cctype> #include <cstring> #include <algorithm> //#define gc(…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2286 [题目大意] 出一棵边权树,每次给出一些关键点,求最小边割集, 使得1点与各个关键点不相连 [题解] 我们将所有关键点抽出构建虚树,记录每个点到根的最小边权, 在虚树上标记关键点,在虚树上做树形dp, 对于虚树上所有点,要么切断所有向下的路径,要么切断向上的路径, 对于被标记的关键点,一定是切断向上路径. [代码] #include <cstdio> #include <…
BZOJ LOJ 洛谷 设\(f[i][0/1]\)表示到第\(i\)个点,不选/选这个点的方案数.对于一棵树,有:\[f[x][0]=\prod_{v\in son[x]}(f[v][0]+f[v][1])\\f[x][1]=\prod_{v\in son[x]}f[v][0]\] 对于非树边的限制,可以再加一维非树边端点的状态(选没选),能得\(55\)分. 对于一条非树边\((u,v)\),要么是\(u\)选\(v\)不选,要么是\(u\)不选\(v\)选,要么是\(u\)不选\(v\)不…
没考虑可以连着两个不选--直接染色了 实际上是基环森林,对于每棵基环树,dfs找出一个环边,然后断掉这条边,分别对这条边的两端点做一边treedp,取max加进答案里 treedp是设f[u]为选u点,g[u]为不选u点,然后随便转移一下就行了 #include<iostream> #include<cstdio> using namespace std; const int N=1000005; int n,h[N],cnt=1,x,y,eg; long long a[N],f[…
题意 N,K≤500,h[i]≤106N,K\le 500,h[i]\le10^6N,K≤500,h[i]≤106 题解 建立出小根堆性质的笛卡尔树,于是每个节点可以代表一个矩形,其宽度为子树大小,高度为该节点记录的那一列高度-父节点那一列高度. 然后就可以随便DP了. 如果不会笛卡尔树,看看这张图,再看看代码就懂了(简单的笛卡尔树). 代码 #include <bits/stdc++.h> using namespace std; typedef long long LL; const in…