sklearn 中 make_blobs模块】的更多相关文章

# 生成用于聚类的各向同性高斯blobsklearn.datasets.make_blobs(n_samples = 100,n_features = 2,center = 3,cluster_std = 1.0,center_box =( - 10.0,10.0),shuffle = True,random_state = None) 参数 n_samples: int, optional (default=100) 待生成的样本的总数. n_features: int, optional (…
sklearn.datasets.make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None) 属性含义: n_samples: int, optional (default=100) The total number of points equally divided among clusters. 待生…
# 常规参数 booster gbtree 树模型做为基分类器(默认) gbliner 线性模型做为基分类器 silent silent=0时,不输出中间过程(默认) silent=1时,输出中间过程 nthread nthread=-1时,使用全部CPU进行并行运算(默认) nthread=1时,使用1个CPU进行运算. scale_pos_weight 正样本的权重,在二分类任务中,当正负样本比例失衡时,设置正样本的权重,模型效果更好.例如,当正负样本比例为1:10时,scale_pos_w…
直接上代码,简单 # -*- coding: utf-8 -*- """ ############################################################################### # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 代码:http://github.com/wanglei5205 # 博客:http://cnblogs.com/wanglei5205 # 目的:学习xgb…
# -*- coding: utf-8 -*- """ ############################################################################### # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 代码:http://github.com/wanglei5205 # 博客:http://cnblogs.com/wanglei5205 # 目的:学习xgboost的plot…
参数解释,后续补上. # -*- coding: utf-8 -*- """ ############################################################################### # 作者:wanglei5205 # 邮箱:wanglei5205@126.com # 代码:http://github.com/wanglei5205 # 博客:http://cnblogs.com/wanglei5205 # 目的:学习x…
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官网上给出的指标如下图所示: 1.2除了上图中的度量指标以外,你还可以自定义一些度量指标:通过sklearn.metrics.make_scorer()方法进行定义: make_scorer有两种典型的用法: 用法一:包装一些在metrics中已经存在的的方法,但是这种方法需要一些参数,例如fbeta…
python版本:3.7 平台:windows 10 集成环境:Anaconda3.7 64位 在jupyter notebook中导入sklearn的相关模块提示ImportError: DLL load failed: 找不到指定的程序. from sklearn.model_selection import train_test_split ImportError: DLL load failed:找不到指定的程序 在conda shell命令行中输入: conda list numpy…
1.聚类算法又叫做“无监督分类”,其目的是将数据划分成有意义或有用的组(或簇).这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布. 2.KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类.簇就是聚类的结果表现.簇中所有数据的均值通常被称为这个簇的“质心”(centroids).在一个二维平面中,一簇数据点的质心的横坐标就是这一簇数据点的横坐标的均值,质心的纵坐标就是这…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
一. sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘. from sklearn.externals import joblib #lr是一个LogisticRegression模型 joblib.dump(lr, 'lr.model') lr = joblib.load('lr.model') 链接:https://www.zhihu.com/question/27187105/answer/55895472 二.pickle >>> from sklearn…
1. 交叉验证概述 进行模型验证的一个重要目的是要选出一个最合适的模型,对于监督学习而言,我们希望模型对于未知数据的泛化能力强,所以就需要模型验证这一过程来体现不同的模型对于未知数据的表现效果. 最先我们用训练准确度(用全部数据进行训练和测试)来衡量模型的表现,这种方法会导致模型过拟合:为了解决这一问题,我们将所有数据分成训练集和测试集两部分,我们用训练集进行模型训练,得到的模型再用测试集来衡量模型的预测表现能力,这种度量方式叫测试准确度,这种方式可以有效避免过拟合. 测试准确度的一个缺点是其样…
学习机器学习童鞋们应该都知道决策树是一个非常好用的算法,因为它的运算速度快,准确性高,方便理解,可以处理连续或种类的字段,并且适合高维的数据而被人们喜爱,而Sklearn也是学习Python实现机器学习的一个非常好用的库,也是被广大学习机器学习们的童鞋们所喜爱的,那么一个被人们喜爱的算法和一个被人们喜爱的库结合到一起会是什么样子的呢,下面就是在Sklearn库中的分类决策树的函数以及所包含的参数. classsklearn.tree.DecisionTreeClassifier(criterio…
机器学习sklearn中的检查验证模块: 原版本导包: from sklearn.cross_validation import cross_val_score 导包报错: 模块继承在cross_validation中,但现在的cross_validation模块已经取消了,继承到了model_selection中 现版本的导包: from sklearn.cross_validation import cross_val_score…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
重要接口inverse_transform  在上周的特征工程课中,我们学到了神奇的接口inverse_transform,可以将我们归一化,标准化,甚至做过哑变量的特征矩阵还原回原始数据中的特征矩阵,这几乎在向我们暗示,任何有inverse_transform这个接口的过程都是可逆的.PCA应该也是如此.在sklearn中,我们通过让原特征矩阵X右乘新特征空间矩阵V(k,n)来生成新特征矩阵X_dr,那理论上来说,让新特征矩阵X_dr右乘V(k,n)的逆矩阵 ,就可以将新特征矩阵X_dr还原为…
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,PCA和SVD涉及了大量的矩阵计算,两者都是运算量很大的模型,但其实,SVD有一种惊人的数学性质,即是它可以跳过数学神秘的宇宙,不计算协方差矩阵,直接找出一个新特征向量组成的n维空间,而这个n维空间就是奇异值分解后的右矩阵(所以一开始在讲解降维过程时,我们说”生成新特征向量组成的空间V",并非巧合,而…
概述 1 从什么叫“维度”说开来 我们不断提到一些语言,比如说:随机森林是通过随机抽取特征来建树,以避免高维计算:再比如说,sklearn中导入特征矩阵,必须是至少二维:上周我们讲解特征工程,还特地提到了,特征选择的目的是通过降维来降低算法的计算成本……这些语言都很正常地被我用来使用,直到有一天,一个小伙伴问了我,”维度“到底是什么? 对于数组和Series来说,维度就是功能shape返回的结果,shape中返回了几个数字,就是几维.索引以外的数据,不分行列的叫一维(此时shape返回唯一的维度…
sklearn提供的自带的数据集   sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_<name> 计算机生成的数据集(Generated Dataset):sklearn.datasets.make_<name> svmlight/libsvm格式的数据集:sklea…
1 简介 数据挖掘的五大流程: 1. 获取数据 2. 数据预处理 数据预处理是从数据中检测,纠正或删除损坏,不准确或不适用于模型的记录的过程 可能面对的问题有:数据类型不同,比如有的是文字,有的是数字,有的含时间序列,有的连续,有的间断.也可能,数据的质量不行,有噪声,有异常,有缺失,数据出错,量纲不一,有重复,数据是偏态,数据量太大或太小 数据预处理的目的:让数据适应模型,匹配模型的需求 3. 特征工程: 特征工程是将原始数据转换为更能代表预测模型的潜在问题的特征的过程,可以通过挑选最相关的特…
标 题: [原创] 隐藏进程中的模块绕过IceSword的检测 作 者: xPLK 时 间: 2008-06-19,17:59:11 链 接: http://bbs.pediy.com/showthread.php?t=66886 [文章标题]: 隐藏进程中的模块绕过IceSword的检测 [文章作者]: 小伟的小伟[0GiNr](看雪ID:xPLK) [作者主页]: http://www.0GiNr.com    http://hi.baidu.com/zoo%5F   [作者声明]: 只是感…
浅析JS中的模块规范(CommonJS,AMD,CMD)   如果你听过js模块化这个东西,那么你就应该听过或CommonJS或AMD甚至是CMD这些规范咯,我也听过,但之前也真的是听听而已.    现在就看看吧,这些规范到底是啥东西,干嘛的. 一.CommonJS  CommonJS就是为JS的表现来制定规范,因为js没有模块的功能所以CommonJS应运而生,它希望js可以在任何地方运行,不只是浏览器中.  CommonJS能有一定的影响力,我觉得绝对离不开Node的人气,不过喔,Node,…
centos 7中python-pip模块不存在,是因为像centos这类衍生的发行版,源跟新滞后,或者不存在.即使使用yum去search python-pip也找不到软件包. 为了使用安装滞后或源中不存在的安装包,需要安装扩展源EPEL.扩展源EPEL(http://fedoraproject.org/wiki/EPEL) 是由 Fedora 社区打造,为 RHEL 及衍生发行版如 CentOS.Scientific Linux 等提供高质量软件包的项目. 安装扩展源:sudo yum -y…
Nodejs中cluster模块的多进程共享数据问题 前述 nodejs在v0.6.x之后增加了一个模块cluster用于实现多进程,利用child_process模块来创建和管理进程,增加程序在多核CPU机器上的性能表现.本文将介绍利用cluster模块创建的多线程如何共享数据的问题. 进程间数据共享 首先举个简单的例子,代码如下: var cluster = require('cluster'); var data = 0;//这里定义数据不会被所有进程共享,各个进程有各自的内存区域 if…
本文以实例形式较为详尽的讲述了Python中optionParser模块的使用方法,对于深入学习Python有很好的借鉴价值.分享给大家供大家参考之用.具体分析如下: 一般来说,Python中有两个内建的模块用于处理命令行参数: 一个是 getopt,<Deep in python>一书中也有提到,只能简单处理 命令行参数: 另一个是 optparse,它功能强大,而且易于使用,可以方便地生成标准的.符合Unix/Posix 规范的命令行说明. 示例如下: ? 1 2 3 4 5 6 7 8…
python中threading模块详解(一) 来源 http://blog.chinaunix.net/uid-27571599-id-3484048.html threading提供了一个比thread模块更高层的API来提供线程的并发性.这些线程并发运行并共享内存. 下面来看threading模块的具体用法: 一.Thread的使用 目标函数可以实例化一个Thread对象,每个Thread对象代表着一个线程,可以通过start()方法,开始运行. 这里对使用多线程并发,和不适用多线程并发做…
标准库的安装路径 在import模块的时候,python是通过系统路径找到这些模块的,我们可以将这些路径打印出来: >>> pprint.pprint(sys.path) ['', '/Library/Python/2.7/site-packages/pip-1.4.1-py2.7.egg', '/Library/Python/2.7/site-packages/python_recsys-0.2-py2.7.egg', '/Users/zhanglixin/opensource/ipy…
CUDA基本使用方法 在介绍OpenCV中GPU模块使用之前,先回顾下CUDA的一般使用方法,其基本步骤如下: 1.主机代码执行:2.传输数据到GPU:3.确定grid,block大小: 4.调用内核函数,GPU运行程序:5.传输结果到CPU:6.继续主机代码执行. 下图是两个向量相加的简单示例程序和处理流图. 注意的问题:cu,cpp文件的组织 内核函数和其wrapper函数置于cu文件中. 在cpp文件声明wrapper函数,并调用wrapper函数. wrapper函数的声明定义需加ext…
模块 编写稍大一点的程序时一般都会将代码模块化.在NodeJS中,一般将代码合理拆分到不同的JS文件中,每一个文件就是一个模块,而文件路径就是模块名. 在编写每个模块时,都有require.exports.module三个预先定义好的变量可供使用. require require函数用于在当前模块中加载和使用别的模块,传入一个模块名,返回一个模块导出对象.模块名可使用相对路径(以./开头),或者是绝对路径(以/或C:之类的盘符开头).另外,模块名中的.js扩展名可以省略.以下是一个例子. var…