需要引入 easyui-lang-zh_CN.js $(document).ready(function(){ var d_buttons = $.extend([], $.fn.datebox.defaults.buttons); d_buttons.splice(1, 0, { text: '清空', handler: function(target){ $(target).datebox('setValue',''); } }); $('.easyui-datebox').datebox(…
为 jQuery EasyUI 1.4 的datebox或datetimebox添加一个清空按钮 使用场景:为用户指定了日期的格式,且日期可以为空 修改语言包easyui-lang-zh_CN.js 在if ($.fn.datebox){ 的下一行添加 (41或42行) $.fn.datebox.defaults.cleanText = '清空'; 在if ($.fn.datetimebox && $.fn.datebox){  $.extend($.fn.datetimebox.defa…
一.相关知识 官网介绍 matplotlib API 相关博客 matplotlib绘图基础 漂亮插图demo 使用seaborn绘制漂亮的热度图 fig, ax = plt.subplots(2,2),其中参数分别代表子图的行数和列数,一共有 2x2 个图像.函数返回一个figure图像和一个子图ax的array列表. 补充:gridspec命令可以对子图区域划分提供更灵活的配置. 中文显示方框问题 这是由于matplotlib文件夹内没有中文字体包导致的,实际上函数包本身是支持中文的,常见解…
1. RunLoop 简介 1.1 什么是 RunLoop? 可以理解为字面意思:Run 表示运行,Loop 表示循环.结合在一起就是运行的循环的意思.哈哈,我更愿意翻译为『跑圈』.直观理解就像是不停的跑圈. RunLoop 实际上是一个对象,这个对象在循环中用来处理程序运行过程中出现的各种事件(比如说触摸事件.UI刷新事件.定时器事件.Selector事件),从而保持程序的持续运行. RunLoop 在没有事件处理的时候,会使线程进入睡眠模式,从而节省 CPU 资源,提高程序性能. 1.2 R…
JS 中继承其实是种委托,而不是传统面向对象中的复制父类到子类,只是通过原型链将要做的事委托给父类. 下面介绍通过对象关联来实现『继承』的方法: Foo = { // 需要提供一个 init 方法来初始化参数,而不能通过构造函数来初始化参数了 init: function(who) { this.me = who; }, identify: function() { return "I am " + this.me; } }; Bar = Object.create(Foo); //…
在博客园看到一篇不错的AJAX级联下拉列表,觉得不错,特地拿下来 :转载来自:『大雪无痕』 ,原文地址 //当一个 下拉列表 改变时,触发所有联动:(警告:各下拉列表之间 请不要出现 循环依赖) //本函数,遵守如下规范:不使用任何内存数据(所有数据都是 即时使用,即时获取,数据实时),不初始化注册, //该规范可以在 HTML 出现任何意外时,保持最好的稳定 function RefreshLinkage(ddlCtrl) { var curId = !ddlCtrl ? "" :…
原文 『WPF』DataGrid的使用 几点说明 这里主要是参考了MSDN中关于DataGrid的说明 这里只会简单说明在WPF中,DataGird最简单的使用方法 对于MSDN中的翻译不会很详细,也不会每一句都翻译. 来自MSDN的内容 Type Name Description Constructors DataGrid Initializes a new instance of the System.Windows.Controls.DataGrid class. Property Ite…
TensorFlow:官方文档 TensorFlow:项目地址 本篇列出文章对于全零新手不太合适,可以尝试TensorFlow入门系列博客,搭配其他资料进行学习. Keras使用tf.Session训练方法教程 一.API介绍 基础操作列表 『TensorFlow』0.x_&_1.x版本框架改动汇总 『TensorFlow』函数查询列表_数值计算 『TensorFlow』函数查询列表_张量属性调整 『TensorFlow』简单的数学计算 『TensorFlow』变量初始化 常用基础操作 『Ten…
在计算机中,没有任何数据类型是固定的,完全取决于如何看待这片数据的内存区域. 在numpy.ndarray.view中,提供对内存区域不同的切割方式,来完成数据类型的转换,而无须要对数据进行额外的copy,可以节约内存空间,我们可以将view看做对内存的展示方式. 如: import numpy as np x = np.arange(10, dtype=np.int) print('An integer array:', x) print ('An float array:', x.view(…
滑动平均会为目标变量维护一个影子变量,影子变量不影响原变量的更新维护,但是在测试或者实际预测过程中(非训练时),使用影子变量代替原变量. 1.滑动平均求解对象初始化 ema = tf.train.ExponentialMovingAverage(decay,num_updates) 参数decay `shadow_variable = decay * shadow_variable + (1 - decay) * variable` 参数num_updates `min(decay, (1 +…
『PyTorch』第六弹_最小二乘法对比PyTorch和TensorFlow TensorFlow 控制流程操作 TensorFlow 提供了几个操作和类,您可以使用它们来控制操作的执行并向图中添加条件依赖关系. tf.identity 『TensorFlow』流程控制之tf.identity tf.tuple tf.group 创建一个操作,该操作可以对 TensorFlow 的多个操作进行分组,输入需要进行分组的零个或多个张量. tf.no_op tf.count_up_to tf.cond…
『教程』Batch Normalization 层介绍 基础知识 下面有莫凡的对于批处理的解释: fc_mean,fc_var = tf.nn.moments( Wx_plus_b, axes=[0], # 想要 normalize 的维度, [0] 代表 batch 维度 # 如果是图像数据, 可以传入 [0, 1, 2], 相当于求[batch, height, width] 的均值/方差, 注意不要加入 channel 维度 ) scale = tf.Variable(tf.ones([o…
一.TFRecord文件书写效率对比(单线程和多线程对比) 1.准备工作 # Author : Hellcat # Time : 18-1-15 ''' import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" ''' import os import glob import numpy as np import tensorflow as tf import matplotlib.pyplot as plt np.set_…
线程控制器类 线程控制器原理: 监视tensorflow所有后台线程,有异常出现(主要是越界,资源循环完了)时,其should_stop方法就会返回True,而它的request_stop方法则用于要求各个线程安全退出.需要使用local变量,初始化时注意. coord = tf.train.Coordinator() # 线程控制器 threads = tf.train.start_queue_runners(coord=coord) # 启动队列 try: while not coord.s…
下图Github地址:Mask_RCNN       Mask_RCNN_KeyPoints『计算机视觉』Mask-RCNN_论文学习『计算机视觉』Mask-RCNN_项目文档翻译『计算机视觉』Mask-RCNN_推断网络其一:总览『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合『计算机视觉』Mask…
一.项目简介 手动实现mini深度学习框架,主要精力不放在运算优化上,仅体会原理. 地址见:miniDeepFrame 相关博客 『TensorFlow』卷积层.池化层详解 『科学计算』全连接层.均方误差.激活函数实现 文件介绍 Layer.py 层 class,已实现:全连接层,卷积层,平均池化层 Loss.py 损失函数 class,已实现:均方误差损失函数 Activate.py 激活函数 class,已实现:sigmoid.tanh.relu test.py 训练测试代码 主流框架对于卷…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
Github地址:Mask_RCNN 『计算机视觉』Mask-RCNN_论文学习 『计算机视觉』Mask-RCNN_项目文档翻译 『计算机视觉』Mask-RCNN_推断网络其一:总览 『计算机视觉』Mask-RCNN_推断网络其二:基于ReNet101的FPN共享网络 『计算机视觉』Mask-RCNN_推断网络其三:RPN锚框处理和Proposal生成 『计算机视觉』Mask-RCNN_推断网络其四:FPN和ROIAlign的耦合 『计算机视觉』Mask-RCNN_推断网络其五:目标检测结果精炼…
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from download import exist_or_download model_url = 'https://s3.amazonaws.com/cadl/models/vgg16.tfmodel' model_dir = 'vgg16/' model_name = 'vgg16.tfmodel' def mode…
一.detect和build 前面多节中我们花了大量笔墨介绍build方法的inference分支,这节我们看看它是如何被调用的. 在dimo.ipynb中,涉及model的操作我们简单进行一下汇总,首先创建图并载入预训练权重, 然后规范了类别序列, 实际开始检测的代码块如下, 经由model.detect方法,调用model.build方法(也就是我们前面多节在讲解的方法)构建图,实施预测. 二.detect方法 首先看看detect方法的前几行(和build一样,同见model.py), d…
一.RPN锚框信息生成 上文的最后,我们生成了用于计算锚框信息的特征(源代码在inference模式中不进行锚框生成,而是外部生成好feed进网络,training模式下在向前传播时直接生成锚框,不过实际上没什么区别,锚框生成的讲解见『计算机视觉』Mask-RCNN_锚框生成): rpn_feature_maps = [P2, P3, P4, P5, P6] 接下来,我们基于上述特征首先生成锚框的信息,包含每个锚框的前景/背景得分信息及每个锚框的坐标修正信息. 接前文主函数,我们初始化rpn m…
一.Mask-RCNN流程 Mask R-CNN是一个实例分割(Instance segmentation)算法,通过增加不同的分支,可以完成目标分类.目标检测.语义分割.实例分割.人体姿势识别等多种任务,灵活而强大. Mask R-CNN进行目标检测与实例分割 Mask R-CNN进行人体姿态识别 其抽象架构如下: 首先,输入一幅你想处理的图片,然后进行对应的预处理操作,或者预处理后的图片: 然后,将其输入到一个预训练好的神经网络中(ResNeXt等)获得对应的feature map: 接着,…
『教程』Batch Normalization 层介绍 知乎:详解深度学习中的Normalization,BN/LN/WN 一.两个概念 独立同分布(independent and identically distributed) 独立同分布的数据可以简化常规机器学习模型的训练.提升机器学习模型的预测能力 白化(whitening) 去除特征之间的相关性 —> 独立: 使得所有特征具有相同的均值和方差 —> 同分布. 二.问题 1.抽象程度高的层难以训练 深度神经网络涉及到很多层的叠加,而每一…
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feature map分别对应不同尺度的固定anchor 回归所有anchor对应的class和bounding box 网络结构简介 输入:300x300 经过VGG-16(只到conv4_3这一层) 经过几层卷积,得到多层尺寸逐渐减小的feature map 每层feature map分别做3x3卷积,…
一.不含参数层 通过继承Block自定义了一个将输入减掉均值的层:CenteredLayer类,并将层的计算放在forward函数里, from mxnet import nd, gluon from mxnet.gluon import nn class CenteredLayer(nn.Block): def __init__(self, **kwargs): super(CenteredLayer, self).__init__(**kwargs) def forward(self, x)…
Yalmip+Ipopt+Cplex使用手册 1.软件版本 Cplex 12.6.2,Matlab R2014a,Ipopt 3.12.9,Yalmip 2.Cplex添加方法 官方下载地址: http://www-01.ibm.com/software/websphere/products/optimization/cplex-studio-community-edition/ 破解版下载地址:http://www.0daydown.com/02/140054.html 其中community…
『实践』VirtualBox 5.1.18+Centos 6.8+hadoop 2.7.3搭建hadoop完全分布式集群及基于HDFS的网盘实现 1.基本设定和软件版本 主机名 ip 对应角色 master 192.168.56.4 NameNode slave1 192.168.56.3 DataNode1 slave2 192.168.56.5 DataNode2 Windows主机设置的ip为192.168.56.88 hadoop压缩包解压地址:/usr/local/hadoop 虚拟机…
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Parameter nn.functional中的函数更像是纯函数,由def function(input)定义. 由于两者性能差异不大,所以具体使用取决于个人喜好.对于激活函数和池化层,由于没有可学习参数,一般使用nn.functional完成,其他的有学习参数的部分则使用类.但是Droupout由于在训…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下 在前面的例子中,基本上都是将每一层的输出直接作为下一层的输入,这种网络称为前馈传播网络(feedforward neural network).对于此类网络如果每次都写复杂的forward函数会有些麻烦,在此就有两种简化方式,ModuleList和Sequential.其中Sequential是一个特殊的module,它包含几个子Module,前向传播时…
os.rename(name_old, name_new) 『Scrapy』爬取斗鱼主播头像 重命名函数os.rename比win下的重命名强多了,它可以对路径重命名达到修改文件位置的功效. os.path.exists(sub_dir_path) 判断是否存在文件夹 os.makedirs(sub_dir_path) 创建文件夹,可以创建多级目录 os.mkdir(sub_dir_path) 创建文件夹,只能创建单级目录 os.walk(’路径‘) [i for i in os.walk('C…