线性代数:A转置乘以A可逆】的更多相关文章

如果A的列向量线性无关,则 T(A)*A得到一个可逆的方阵. 假设A是一个kxn的矩阵,那么T(A)*A是一个nxn的方阵:要证明这个方阵可逆,只要证明N(T(A)*A) = 零空间即可. 假设列向量向量V,满足 (T(A)*A) V = 0  =>  T(V)*T(A)*A*V = 0 => T(AV)*(A*V) = 0 => AV=0   A的零空间只包含零向量 =>V = 0…
原理解析: 本节介绍矩阵的转置.矩阵的转置即将矩阵的行和列元素调换,即原来第二行第一列(用C21表示,后同)与第一行第二列(C12)元素调换位置,原来c31与C13调换.即cij与cji调换 . (此处补图说明) C++语言: 首先我们想到的是把第i行第j列取出来与第j行第i列调换,这种思路很简单就不多说了. 这里提供另一个思路,对整行整列进行操作,方法如下: 使用getSpecifiedRow()把本矩阵中的第i行取出来放在向量tempVec中: 使用 addOneColumToBack()把…
一.代数是什么 代数->数的抽象表示->向量空间(线性空间) 线代->线性代数 关系: 向量空间之间和内部转换是通过线性变换. 实数——一维空间的点 复数——二维空间的点 如果两个向量的组合可以生成平面,则要求两个向量要线性无关. 推广一下,N维空间里点可以用N个线性无关的向量来表示.这N个向量就是这个平面的基. 向量的封闭——对加法和数乘封闭. 向量V中任意两个向量a,b加法a+b,仍然在V中,实数乘法x*b,仍然也在V中. 线性相关——其中的一个向量可以用其他的向量表示出来. 矩阵操…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
四.多变量线性回归(Linear Regression with Multiple Variables) 4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践1-特征缩放 4.4 梯度下降法实践2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性(可选) 五.Octave教程(Octave Tutorial) 5.1 基本操作 5.2 移动数据 5.3 计算数据 5.4 绘图数据 5.5 控制语句:for,while,if语句 5.6 向量化 5.7 工…
0. 引言 本文主要的目的在于讨论PAC降维和SVD特征提取原理,围绕这一主题,在文章的开头从涉及的相关矩阵原理切入,逐步深入讨论,希望能够学习这一领域问题的读者朋友有帮助. 这里推荐Mit的Gilbert Strang教授的线性代数课程,讲的非常好,循循善诱,深入浅出. Relevant Link:  Gilbert Strang教授的MIT公开课:数据分析.信号处理和机器学习中的矩阵方法 https://mp.weixin.qq.com/s/gi0RppHB4UFo4Vh2Neonfw 1.…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的 文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在 大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与…
特征值与特征向量 下面这部分内容摘自:强大的矩阵奇异值分解(SVD)及其应用 特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征.先谈谈特征值分解吧: 如果说一个向量v是方阵A的特征向量,则可以表示成下面的形式: 这时候λ就被称为特征向量v对应的特征值,一个矩阵的一组特征向量是一组正交向量.特征值分解是将一个矩阵分解成下面的形式: 其中Q是这个矩阵A的特征向量组成的矩阵,Σ是一个对…
KCF目标跟踪方法分析与总结 correlation filter Kernelized correlation filter tracking 读"J. F. Henriques, R. Caseiro, P. Martins, J. Batista, 'High-speed tracking with kernelized correlation filters'" 笔记 KCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
Octave/Matlab Tutorial Octave/Matlab Tutorial Basic Operations 你现在已经掌握不少机器学习知识了 在这段视频中 我将教你一种编程语言 Octave语言 你能够用它来非常迅速地 实现这门课中我们已经学过 或者将要学的 机器学习算法 过去我一直尝试用不同的编程语言 来教授机器学习 包括C++.Java. Python.Numpy 和 Octave 我发现当使用像 Octave这样的 高级语言时 学生能够更快 更好地学习 并掌握这些算法 事…
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异值有关的应用背景.奇异值分解是一个有着很明显的物理意义的一种方法,它可以将一个比较复杂的矩阵用更小更简单的几个子矩阵的相乘来表示,这些小矩阵描述的是矩阵的重要的特性.就像是描述一个人一样,给别人描述说这个人长得浓眉大…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与奇异…
这门课是CS100.1x的后续课,看课程名字就知道这门课主要讲机器学习.难度也会比上一门课大一点.如果你对这门课感兴趣,可以看看我这篇博客,如果对PySpark感兴趣,可以看我分析作业的博客. Course Software Setup 这门课的环境配置和上一门一模一样,参考我的这篇博客CS100.1x Introduction to Big Data with Apache Spark. Lecture 1 Course Overview and Introduction to Machine…
概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归.说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务.那什么是回归任务和分类任务呢?简单的来说,在监督学习中(也就是有标签的数据中),标签值为连续值时是回归任务,标志值是离散值时是分类任务.而线性回归模型就是处理回归任务的最基础的模型. 形式 在只有一个变量的情况下,线性回归可以用方程:y = ax+b 表示.而如果有多个变量,也就是n元线性回归的形式如下: n元线性回归 在这里我们将截断b…
网址:http://blog.csdn.net/alec1987/article/details/7414450 在数学中,正规矩阵 是与自己的共轭转置交换的复系数方块矩阵,也就是说, 满足 其中 是 的共轭转置. 如果 是实系数矩阵,那么条件简化为 其中 是 的转置矩阵. 矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵. 在复系数矩阵中,所有的酉矩阵.埃尔米特矩阵和斜埃尔米特矩阵都是…
线性回归(Linear Regression with One / Multiple Variable) 定义符号(Symbol Definition) m = 数据集中训练样本的数量 n = 特征的数量 x = 输入变量 / 特征 y = 输出变量 / 目标变量 (x, y) 表示一个训练样本 \(x^{(i)}\) 训练集中第 i 个样本 \(x_j^{(i)}\) 训练集中第 i 个样本中第 j 个特征 假设函数(Hypothesis Function) 以下所有 \(x_0^{(i)}…
机器学习中SVD总结 矩阵分解的方法 特征值分解. PCA(Principal Component Analysis)分解,作用:降维.压缩. SVD(Singular Value Decomposition)分解,也叫奇异值分解. LSI(Latent Semantic Indexing)或者叫LSA(Latent Semantic Analysis),隐语义分析分解. PLSA(Probabilistic Latent Semantic Analysis),概率潜在语义分析.PLSA和LDA…
读"J. F. Henriques, R. Caseiro, P. Martins, J. Batista, 'High-speed tracking with kernelized correlation filters'" 笔记 KCF是一种鉴别式追踪方法,这类方法一般都是在追踪过程中训练一个目标检测器,使用目标检测器去检测下一帧预测位置是否是目标,然后再使用新检测结果去更新训练集进而更新目标检测器.而在训练目标检测器时一般选取目标区域为正样本,目标的周围区域为负样本,当然越靠近目…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 上一次写了关于PCA与LDA的 文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在 大部分人的印象中,往往是停留在纯粹的数学计算中.而且…
人工智能   人工智能(Artificial Intelligence,简称AI)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展.由于人工智能的研究是高度技术性和专业的,各分支领域都是深入且各不相通的,因而涉及范围极广 . 人工智能的核心问题包括建构能够跟人类似甚至超越人类的推理.知识.学习.交流.感知.使用工具和操控机械的能力等,当前人工智能已经有了初步成果,甚至在一些影像识别.语言分析.棋类游戏等等单方面的能力达到了超越…
Linear Algebra Learning From Data 1.1 Multiplication Ax Using Columns of A 有关于矩阵乘法的理解深入 矩阵乘法理解为左侧有是一个向量集合,都是由列向量组成的,随后右侧则是一个待变换的向量,当这个向量作用于这个向量组之后等效于在这个向量组为基底进行了换底操作,这样就从原来的单位向量基底换到了这个新的向量基底. 向量空间理解 向量空间的理解: 所有的向量组都表示着一个向量空间,而这个向量空间是只能描述比这个向量底的维度,所有的…
目录 一.线性回归 1,假设函数.代价函数,梯度下降 2,特征处理 3,代价函数和学习速率 4,特征和多项式回归 5,正规方程 二.逻辑回归(Logistic Regression,LR) 1,假设函数 2,代价函数 3,梯度下降算法 4,高级算法 三.正则化 1,过拟合 2,正则化 3,正则化线性回归 4,正则化逻辑回归 四.神经网络 1,正向传播算法 2,反向传播算法 3,梯度检验.随机初始化 五.应用机器学习的建议 六.支持向量机SVM 1,代价函数 2,核函数 3,参数的影响,其他核函数…
PCA目的:这里举个例子,如果假设我有m个点,{x(1),...,x(m)},那么我要将它们存在我的内存中,或者要对着m个点进行一次机器学习,但是这m个点的维度太大了,如果要进行机器学习的话参数太多,或者说我要存在内存中会占用我的较大内存,那么我就需要对这些个点想一个办法来降低它们的维度,或者说,如果把这些点的每一个维度看成是一个特征的话,我就要减少一些特征来减少我的内存或者是减少我的训练参数.但是要减少特征或者说是减少维度,那么肯定要损失一些信息量.这就要求我在减少特征或者维度的过程当中呢,尽…
Section 2.7     PA=LU and Section 3.1   Vector Spaces and Subspaces   Transpose(转置) example: 特殊情况,对称矩阵(symmetric matrices),例如: 思考:R^R(R的转置乘以R)有什么特殊的? 回答:always symmetric why?   Permutation(置换) P=execute row exchanges 之前A=LU是建立在no row exchanges 的基础上的,…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…
这是Hinton的第14课,主要介绍了RBM和DBN的东西,这一课的课外读物有三篇论文<Self-taught learning- transfer learning from unlabeled data>和<A Fast Learning Algorithm for Deep Belief Nets>以及<To recognize shapes, first learn to generate images>.(ps:在下文中样本和采样来自同一个英文单词,泛化和生成…