tensorflow中创建多个计算图(Graph)】的更多相关文章

tf程序中,系统会自动创建并维护一个默认的计算图,计算图可以理解为神经网络(Neural Network)结构的程序化描述.如果不显式指定所归属的计算图,则所有的tensor和Operation都是在默认计算图中定义的,使用tf.get_default_graph()函数可以获取当前默认的计算图句柄. # -*- coding: utf-8 -*-) import tensorflow as tf a=tf.constant([1.0,2.0]) b=tf.constant([1.0,2.0])…
Tensorflow中的图(tf.Graph)和会话(tf.Session) Tensorflow编程系统 Tensorflow工具或者说深度学习本身就是一个连贯紧密的系统.一般的系统是一个自治独立的.能实现复杂功能的整体.系统的主要任务是对输入进行处理,以得到想要的输出结果.我们之前见过的很多系统都是线性的,就像汽车生产工厂的流水线一样,输入->系统处理->输出.系统内部由很多单一的基本部件构成,这些单一部件具有特定的功能,且需要稳定的特性:系统设计者通过特殊的连接方式,让这些简单部件进行连…
计算图(Graph) Tensorflow是基于图(Graph)的计算框架,图的节点由事先定义的运算(操作.Operation)构成,图的各个节点之间由张量(tensor)来链接,Tensorflow的计算过程就是张量(tensor)在节点之间从前到后的流动传输过程,如下图示例: 有向图中,节点通常代表数学运算,边表示节点之间的某种联系,它负责传输多维数据(Tensors). 节点可以被分配到多个计算设备上,可以异步和并行地执行操作.因为是有向图,所以只有等到之前的入度节点们的计算状态完成后,其…
tensor的含义是张量,张量是什么,听起来很高深的样子,其实我们对于张量一点都不陌生,因为像标量,向量,矩阵这些都可以被认为是特殊的张量.如下图所示: 在TensorFlow中,tensor实际上就是各种"数"的统称.而flow是流动的意思.所以TensorFlow的意思就是"数"的流动,可以说TensorFlow这个名字很形象.一般来说,编程模式有两种,一种是命令式的,一种是符号式的.命令式便于理解和调试,而符号式便于对复杂代码进行封装和抽象(就想我们把一些操作…
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686555 最近需要使用slim模块,先把slim的github readme放在这里,后续会一点一点翻译 github:https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/slim TensorFlow-Sli…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 作为一款优秀的异构深度学习算法框架,TensorFlow可以在多种设备上运行算法程序,包括CPU,GPU,Google开发的TPU等.因为TensorFlow的架构特性非常好,可扩展性很强,所以也支持用户自定义补充其他计算设备,比如可以接入FPGA甚至是自定义芯片等.虽然在Google发布的TensorFlow white paper中并没有过多的描述设备管理相关的内容,只是…
TensorFlow中的Session.Graph.operation.tensor…
背景 [作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 受限于单个Device的计算能力和存储大小,许多深度学习模型都有着使用模型分片或相关策略的需求.模型分片的本质是将模型和相关的计算切分到不同的Device,这样做不但可以解决单个Device放不下大模型的问题,还有可能有计算加速的收益.在深度学习框架方面,显然TensorFlow比Caffe具有更高的灵活性,这主要得益于TensorFlow的Placement机制.Place…
1 run()函数存在的意义 run()函数可以让代码变得更加简洁,在搭建神经网络(一)中,经历了数据集准备.前向传播过程设计.损失函数及反向传播过程设计等三个过程,形成计算网络,再通过会话tf.Session().run()进行循环优化网络参数.这样可以使得代码变得更加简洁,可以集中处理多个图和会话,明确调用tf.Session().run()可能是一种更加直观的方法. 总而言之,我们先规划好计算图,再编写代码,之后调用tf.Session.run().简洁高效. 在实际代码中,一般写成下种形…
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-scope-in-tensorflow 问题:下面这几个函数的区别是什么? tf.variable_op_scope(values, name, default_name, initializer=None) Returns a context manager for defining an op t…