Manacher(马拉车)学习笔记】的更多相关文章

Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的最长回文子串 时间复杂度:O(N) 算法步骤: 1.添加特殊字符 由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上'#',那么 bob -->…
终于填坑啦......马拉车 课件上说的好短,但是明白了,讲解稍微修改一下抄上行了,比扩展KMP好写多了 求以每个字符为中心的最长回文串的半径.如果要求可以以字符间隙为回文中心,就要在每两个字符之间及两端加入一个’#’,然后再解决.令r[i]为以i为中心的最长回文半径.从左往右依次求r数组.当前要求r[i],曾经的j+r[j]-1最大是p,对应的下标为a.如果r[2*a-i]+i-1<p,r[i]=r[2*a-i]:否则r[i]≥p-i+1,暴力向后扩展. 2*a-i就是i关于a的对称位置,上面…
前言 Manacher(也叫马拉车)是一种用于在线性时间内找出字符串中最长回文子串的算法 算法 一般的查找回文串的算法是枚举中心,然后往两侧拓展,看最多拓展出多远.最坏情况下$O(n^2)$ 然而Manacher能够充分利用回文的性质 首先,回文分为奇回文(比如$aba$)和偶回文(比如$abba$),如果分开来讨论会很麻烦. 于是我们在原串的首尾以及每两个字符之间各插入一个原串中没有出现过的字符.比如$abbbac$,变成$\%a\%b\%b\%b\%a\%c\%$ 那么这样的话,上面的$ab…
算法用处: 解决最长回文子串的问题(朴素型). 算法复杂度 我们不妨先看看其他暴力解法的复杂度: \(O(n^3)\) 枚举子串的左右边界,然后再暴力判断是否回文,对答案取 \(max\) . \(O(n^2)\) 枚举回文子串的对称轴,向两边扩展,对答案取 \(max\) . \(O(n)\) \(\texttt{Manacher}\) 算法. 显然我们的 \(\texttt{Manacher}\) 是十分优秀的... 实现原理 \(\text{step 1}\) 首先我们需解决一个问题: 回…
Manacher算法 - 学习笔记 是从最近Codeforces的一场比赛了解到这个算法的~ 非常新奇,毕竟是第一次听说 \(O(n)\) 的回文串算法 我在 vjudge 上开了一个[练习],有兴趣的reader们可以参考一下 \(QwQ\) 『算法简述』 一个思路比较简单但非常有效的字符串算法(其实不止字符串,反正就是用来求回文的),用于求给定字符串中的回文子串,有一些研究者证明了它的时间复杂度均摊下来是 \(O(n)\) 的,只可惜我看不懂他们怎么证明的-- 中文名叫"马拉车"算…
[学习笔记]字符串-马拉车(Manacher) 一:[前言] 马拉车用于求解连续回文子串问题,效率极高. 其核心思想与 \(kmp\) 类似:继承. --引自 \(yyx\) 学姐 二:[算法原理] 对于任意一个回文串 \(a\),设其中点为 \(mid\)(为方便描述,偶数串则在正中央加一个位置),那么根据定义,有: \(a[mid-1]==a[mid+1]\) \(a[mid-2]==a[mid+2]\) \(...\) 可知: 如果 \(a[mid-x]\) 可以形成半径为 \(r\) 的…
点亮技能树行动-- 本篇blog按照分类将网上写的OI知识点归纳了一下,然后会附上蒟蒻我的学习笔记或者是我认为写的不错的专题博客qwqwqwq(好吧,其实已经咕咕咕了...) 基础算法 贪心 枚举 分治 倍增 构造 高精 模拟 图论 图 最短路,次短路 k短路 差分约束 最小生成树 拓扑排序 欧拉图 二分图染色,二分图匹配 最大团,最大独立集 tarjan找scc.桥.割点,缩点 网络流 最大流,最小割,费用流 有上下界的网络流 分数规划 2-SAT 树 LCA 最近公共祖先 树的直径 树的重心…
之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者服务器 一.安装webpack 你需要之前安装node.js $ npm install webpack -g 安装成功后,便可以使用webpack命令行了. ok,开始工作! 二.新建一个空目录,名字为myApp,文件如下 entry.js document.write("It works.&qu…
1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 3.  UML类图 4.  思维导图 (右键查看图片可放大) 5.  PHP代码 我已经把有关这部分PHP代码,上传到git.oschina.net上,可以在 https://git.oschina.net/andywww/myTest 的文件夹template_Study下看到相关的完整代码. templa…
1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UML类图解析: 4.PHP代码: 我已经把有关这部分PHP代码,上传到git.oschina.net上,可以在 https://git.oschina.net/andywww/myTest 的文件夹 login1下看到相关的完整代码. (完.)…