spark bulkload hbase笔记】的更多相关文章

1. 现有的三方包不能完全支持 - 官方:hbase-spark,不能设置 timestamp - unicredit/hbase-rdd:接口太复杂,不能同时支持多个 family 2. HFile 得是有序的,排序依据 KeyValue.KVComparator,于是我们自定义一个 Comparator,内部调用 KeyValue.KVComparator 3. 如果没有自定义 partitioner,极有可能出现以下异常ERROR: "java.io.IOException: Retry…
背景 之前的博客:Spark:DataFrame写HFile (Hbase)一个列族.一个列扩展一个列族.多个列 用spark 1.6.0 和 hbase 1.2.0 版本实现过spark BulkLoad Hbase的功能,并且扩展了其只能操作单列的不便性. 现在要用spark 2.3.2 和 hbase 2.0.2 来实现相应的功能: 本以为会很简单,两个框架经过大版本的升级,API变化很大: 官网的案例其实有点难实现,且网上的资料要么老旧,要么复制黏贴实在是感人,所以花了点时间重新实现了该…
1 问题描述 在使用Spark BulkLoad数据到HBase时遇到以下问题: 17/05/19 14:47:26 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 12.0 (TID 79, bydslave5, executor 3): java.io.IOException: Non-increasing Bloom keys: 80a01055HAXMTXG10100001KEY_VOLTAGE_T_C_PWR after af…
作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduce或者spark的driver class中声明如下代码 job.getConfiguration().set(TableOutputFormat.OUTPUT_TABLE, tablename); 随后mapreduce在mapper或者reducer中直接context写入即可,而spark则是…
HBase经过七年发展,终于在今年2月底,发布了 1.0.0 版本.这个版本提供了一些让人激动的功能,并且,在不牺牲稳定性的前提下,引入了新的API.虽然 1.0.0 兼容旧版本的 API,不过还是应该尽早地来熟悉下新版API.并且了解下如何与当下正红的 Spark 结合,进行数据的写入与读取.鉴于国内外有关 HBase 1.0.0 新 API 的资料甚少,故作此文. 本文将分两部分介绍,第一部分讲解使用 HBase 新版 API 进行 CRUD 基本操作:第二部分讲解如何将 Spark 内的…
于Spark它是一个计算框架,于Spark环境,不仅支持单个文件操作,HDFS档,同时也可以使用Spark对Hbase操作. 从企业的数据源HBase取出.这涉及阅读hbase数据,在本文中尽快为了尽可能地让我们可以实践和操作Hbase.Spark Shell 来进行Hbase操作. 一.环境: Haoop2.2.0 Hbase版本号0.96.2-hadoop2, r1581096 Spark1.0.0 本文如果环境已经搭建好,Spark环境搭建可见Spark Haoop集群搭建 Hadoop2…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
  Spark 基本函数学习笔记一¶ spark的函数主要分两类,Transformations和Actions. Transformations为一些数据转换类函数,actions为一些行动类函数: 转换:转换的返回值是一个新的RDD集合,而不是单个值.调用一个变换方法, 不会有任何求值计算,它只获取一个RDD作为参数,然后返回一个新的RDD. 行动:行动操作计算并返回一个新的值.当在一个RDD对象上调用行动函数时, 会在这一时刻计算全部的数据处理查询并返回结果值. 这里介绍pyspark中常…
一. Hbase的region 我们先简单介绍下Hbase的架构和Hbase的region: 从物理集群的角度看,Hbase集群中,由一个Hmaster管理多个HRegionServer,其中每个HRegionServer都对应一台物理机器,一台HRegionServer服务器上又可以有多个Hregion(以下简称region).要读取一个数据的时候,首先要先找到存放这个数据的region.而Spark在读取Hbase的时候,读取的Rdd会根据Hbase的region数量划分stage.所以当r…
一.spark写入hbase hbase client以put方式封装数据,并支持逐条或批量插入.spark中内置saveAsHadoopDataset和saveAsNewAPIHadoopDataset两种方式写入hbase.为此,将同样的数据插入其中对比性能. 依赖如下: <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core --> <dependency> <groupId>org.…