论文地址:https://arxiv.org/abs/1810.11525   论文视频:https://www.youtube.com/watch?v=W-6ViSlrrZg​www.youtube.com 简介         作者提出同时进行目标检测和位姿估计,利用一段连续的图像帧,这个图像帧和slam不同之处在于它是对一个场景的扫描,运动的幅度可能很小,就在一个场景附近各个角度扫的一段图形序列,然后在机器人运动的时候通过ORBSLAM定位机器人自己的位置,利用faster-rcnn对…
Rich feature hierarchies for accurate object detection and semantic segmentation 作者: Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik 引用: Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation…
Adversarial Examples for Semantic Segmentation and Object Detection (语义分割和目标检测中的对抗样本) 作者:Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, Alan Yuille, Department of Computer Science, The Johns Hopkins University, Baltimore, MD 21218 U…
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程,分割的文章次之,而定位的文章就少之又少了.这其中的缘由也很简单:识别目前来说已经不是什么难事了,所以容易写,但分割和定位却仍然是一个头疼不已的问题,不同场景方法不同,甚至同一场景也要结合多种图像处理方法,因此很难有通用的解决策略.在深度学习火起来之后,很多研究人员开始尝试用深度学习的特征提取能力来…
作者:Ross Girshick,Jeff Donahue,Trevor Darrell,Jitendra Malik 该论文提出了一种简单且可扩展的检测算法,在VOC2012数据集上取得的mAP比当时性能最好的算法高30%.算法主要结合了两个key insights: (1)可以将高容量的卷积神经网络应用到自底向上的Region proposals(候选区域)上,以定位和分割目标 (2)当带标签的训练数据稀少时,可以先使用辅助数据集进行有监督的预训练,然后再使用训练集对网络的特定范围进行微调,…
目标检测系列 --- RCNN: Rich feature hierarchies for accurate object detection and semantic segmentation Tech report 1. Architecture: Region proposals: 使用selective search获取region proposals,对于每一幅图像获取约2000个region proposals,并将每一个proposal wrap到需要的size,论文中为224*2…
Rich feature hierarchies for accurate object detection and semantic segmentation Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik UC Berkeley 丰富多级特征用于精准对象检测和语义分割 --------------------------------------------------------------------------------…
论文标题:Rich feature hierarchies for accurate object detection and semantic segmentation 标题翻译:丰富的特征层次结构,可实现准确的目标检测和语义分割 论文作者:Ross Girshick Jeff Donahue Trevor Darrell Jitendra Mali 论文地址:http://fcv2011.ulsan.ac.kr/files/announcement/513/r-cnn-cvpr.pdf RC…
论文原址:https://arxiv.org/pdf/1904.02701.pdf github:https://github.com/OceanPang/Libra_R-CNN 摘要 相比模型的结构,关注度较少的训练过程对于检测器的成功检测也是十分重要的.本文发现,检测性能主要受限于训练时,sample level,feature level,objective level的不平衡问题.为此,提出了Libra R-CNN,用于对目标检测中平衡学习的简单有效的框架.主要包含三个创新点:(1)Io…
Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awesome-object-detection This is a list of awesome articles about object detection. R-CNN Fast R-CNN Faster R-CNN Light-Head R-CNN Cascade R-CNN SPP-Net Y…