分类问题的评价指标是准确率,那么回归算法的评价指标就是MSE,RMSE,MAE.R-Squared. MSE和MAE适用于误差相对明显的时候,大的误差也有比较高的权重,RMSE则是针对误差不是很明显的时候:MAE是一个线性的指标,所有个体差异在平均值上均等加权,所以它更加凸显出异常值,相比MSE: RMSLE: 主要针对数据集中有一个特别大的异常值,这种情况下,data会被skew,RMSE会被明显拉大,这时候就需要先对数据log下,再求RMSE,这个过程就是RMSLE.对低估值(under-p…
一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 RMSE:均方根误差 MAE:平均绝对误差 二.具体实现 1)自己的代码 import numpy as np from sklearn.metrics import r2_score class SimpleLinearRegression: def __init__(self): ""…
RMSE Root Mean Square Error,均方根误差 是观测值与真值偏差的平方和与观测次数m比值的平方根. 是用来衡量观测值同真值之间的偏差 MAE Mean Absolute Error ,平均绝对误差 是绝对误差的平均值 能更好地反映预测值误差的实际情况. 标准差 Standard Deviation ,标准差 是方差的算数平方根 是用来衡量一组数自身的离散程度 RMSE与标准差对比:标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究…
来源:https://blog.csdn.net/capecape/article/details/78623897 RMSE Root Mean Square Error, 均方根误差是观测值与真值偏差的平方和与观测次数 m 比值的平方根.是用来衡量观测值同真值之间的偏差MAE Mean Absolute Error ,平均绝对误差是绝对误差的平均值能更好地反映预测值误差的实际情况.标准差 Standard Deviation ,标准差是方差的算数平方根是用来衡量一组数自身的离散程度 RMSE…
在上一个博客中,我们构建了随机森林温度预测的基础模型,并且研究了特征重要性. 在这个博客中,我们将从两方面来研究数据对预测结果的影响 第一方面:特征不变,只增加样本的数据 第二方面:增加特征数,增加样本的数据 1.sns.pairplot 画出两个变量的关系图,用于研究变量之间的线性相关性,sns.pattle([color]) 用于设置调色板, 有点像scatter_matrix 2.MSE   round(abs(pred - test_y).mean(), 2)  研究预测值与真实值之差的…
https://blog.csdn.net/reallocing1/article/details/56292877 MSE: Mean Squared Error  均方误差是指参数估计值与参数真值之差平方的期望值;  MSE可以评价数据的变化程度,MSE的值越小,说明预测模型描述实验数据具有更好的精确度.   MSE=1N∑t=1N(observedt−predictedt)2 MSE=1N∑t=1N(observedt−predictedt)2 RMSE  均方误差:均方根误差是均方误差的…
1.MSE(均方误差)(Mean Square Error) MSE是真实值与预测值的差值的平方然后求和平均. 范围[0,+∞),当预测值与真实值完全相同时为0,误差越大,该值越大. import numpy as np from sklearn import metrics y_true = np.array([1.0, 5.0, 4.0, 3.0, 2.0, 5.0, -3.0]) y_pred = np.array([1.0, 4.5, 3.5, 5.0, 8.0, 4.5, 1.0])…
方差(variance).标准差(Standard Deviation).均方差.均方根值(RMS).均方误差(MSE).均方根误差(RMSE) 2017年10月08日 11:18:54 cqfdcw 阅读数:31959   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/cqfdcw/article/details/78173839 <方差(variance).标准差(Standard Deviation).均方差.均方根值(RMS).均方误差…
  MAE.MSE.RMSE.MAPE(MAPD)这些都是常见的回归预测评估指标,重温下它们的定义和区别以及优缺点吧     MAE(Mean Absolute Error) 平均绝对误差                                                  是基础的评估方法,后面的方法一般以此为参考对比优劣. MSE(Mean Square Error) 平均平方差                                                  …