首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Solution -「APIO 2018」「洛谷 P4630」铁人两项
】的更多相关文章
洛谷P4630 [APIO2018]铁人两项 [广义圆方树]
传送门 又学会了一个新东西好开心呢~ 思路 显然,假如枚举了起始点\(x\)和终止点\(y\),中转点就必须在它们之间的简单路径上. 不知为何想到了圆方树,可以发现,如果把方点的权值记为双联通分量的大小,圆点权值记为-1,那么\(x \rightarrow y\)的答案就是树上\(x\rightarrow y\)的路径权值和. 直接枚举\(O(n^2)\),点分治\(O(n\log n)\),考虑每个点被经过的次数乘上它的权值即可\(O(n)\). 注意图可能不连通. 代码 #include<b…
Solution -「APIO 2018」「洛谷 P4630」铁人两项
\(\mathcal{Description}\) Link. 给定一个 \(n\) 个点 \(m\) 条边的无向图(不保证联通),求有序三元点对 \((s,c,f)\) 的个数,满足 \(s,c,f\) 互不相同,且存在一条从 \(s\) 到 \(c\) 再到 \(f\) 的简单路径. \(n\le10^5\),\(m\le2\times10^5\). \(\mathcal{Solution}\) 首先考虑这样一个问题,若 \(s,c,f\) 在同一点双中,是否一定满足条件.…
「区间DP」「洛谷P1043」数字游戏
「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME pre=${name%.*} g++ -O2 $dir/$name -o $pre -g -Wall -std=c++11 if test $? -eq 0; then gnome-terminal -x bash -c "time $dir/$pre;echo;read;" fi*/ #…
洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】
题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双,点双内所有点一定都可以作为中介点 那么我们将方点赋值为点双大小,为了去重,剩余点赋值\(-1\) 答案就是任意两点间权值和之和 我们只需枚举每个点被经过多少次,这就很容易计算了 复杂度\(O(n)\) #include<algorithm> #include<iostream> #i…
Solution -「APIO 2016」「洛谷 P3643」划艇
\(\mathcal{Description}\) Link & 双倍经验. 给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\{c_n\}\) 的个数,使得: \(\forall i~~~~c_i=0\lor c_i\in[a_i,b_i)\). \(\forall i<j~~~~c_i\not=0\land c_j\not=0\Rightarrow c_i<c_j\). 对 \(10^9+7\) 取模. \(n…
Solution -「JSOI 2019」「洛谷 P5334」节日庆典
\(\mathscr{Description}\) Link. 给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的). \(|S|\le3\times10^6\). \(\mathscr{Solution}\) 注意到一个显然的事实,对于某个前缀 \(S[:i]\) 以及两个起始下标 \(p,q\),若已有 \(S[p:i]<S[q:i]\),那么在所有的 \(j>i\) 中,都有 \(S[p:j]<S[q:j]\).换言之,最终…
Solution -「洛谷 P4372」Out of Sorts P
\(\mathcal{Description}\) OurOJ & 洛谷 P4372(几乎一致) 设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排序,则重复冒泡排序零次或多次,直到存在某个位置 \(p\in[l,r)\),满足 \(\max_{i=l}^p\{a_i\}<\min_{i=p+1}^r\{a_i\}\),则递归入 \([l,p]\) 和 \((p,r]\),直到区间长度为 \(1\) 时停止.求所有冒泡排序所操作的区间长度之和. …
Solution -「POI 2010」「洛谷 P3511」MOS-Bridges
\(\mathcal{Description}\) Link.(洛谷上这翻译真的一言难尽呐. 给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 \(u\) 到 \(v\) 的代价为 \(a\),\(v\) 到 \(u\) 的代价为 \(b\).求从结点 \(1\) 开始的,经过每个点至少一次,每条边恰好一次,最后回到结点 \(1\) 的路径,使得每条边代价的最大值最小. \(n,a,b\le10^3\),\(m\le2\times10^…
Solution -「JSOI2008」「洛谷 P4208」最小生成树计数
\(\mathcal{Description}\) link. 给定带权简单无向图,求其最小生成树个数. 顶点数 \(n\le10^2\),边数 \(m\le10^3\),相同边权的边数不超过 \(10\). \(\mathcal{Solution}\) 先说一个引理:对于一个图的任意两棵最小生成树,其边权集合相等. 简单证明一下,设有两个最小生成树的边权集合 \(\{\dots,a,b,\dots\},\{\dots,c,d,\cdots\}\)(省略号处相等,不降排列).…
Solution -「洛谷 P6158」封锁
\(\mathcal{Description}\) Link. 给定一个 \(n\times n\) 的格点图,横纵相邻的两格点有一条边权为二元组 \((w,e)\) 的边.求对于 \(S=(1,1)\) 和 \(T=(n,n)\) 的一个割,使得 \((\sum w)(\sum c)\) 最小. \(n\le400\). \(\mathcal{Solution}\) 套路题,P5540 + P4001.所以我把这两题题解合二为一. 假设边权都是普通的数字,考虑怎么快速求出这…