Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循环.它的工作原理是使用Bellman-Ford 算法来计算输入图的转换,该转换去除了所有负权重,从而允许在转换后的图上使用Dijkstra 算法.Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循…
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况: 对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离.例如,对每个顶点应用 Bel…
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Problem),其中图 G 允许存在权值为负的边,但不存在权值为负的回路.Floyd-Warshall 算法的运行时间为 Θ(V3). Floyd-Warshall 算法由 Robert Floyd 于 1962 年提出,但其实质上与 Bernad Roy 于 1959 年和 Stephen Warshal…
前置扯淡 一年多前学的最短路,当时就会了几个名词的拼写,啥也没想过 几个月之前,听说了"全源最短路"这个东西,当时也没说学一下,现在补一下(感觉实在是没啥用) 介绍 由于\(spfa\)容易被卡,实际上我们在\(O(nlog \space n)\) 的算法只有堆优化的\(Dijkstra\) 由于先天问题,\(Dijkstra\)无法处理在负权图上的问题 所以"\(Johnson\)全源最短路"算法就应运而生了 算法流程 我们针对\(Dijkstra\)无法处理负权…
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快速的求出单源最短路,即一个源点的最短路. 而\(Floyd\)算法,这个及其简短的算法,可以以\(O(n^3)\)的复杂度算出任意一对点之间的最短路. 我们发现,\(floyd\)算法的时间复杂度和边的数量没有多大的关系,也就是说,\(floyd\)使用的最优条件是稠密图. 那么问题来了,如果我们面…
最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中所做的笔记,笔记后面提供了4种编程语言的仿真代码(C, C++, Python, Matlab),使实现方式更加灵活,同时增强对PID的理解.(文章较长,可点击右侧目录选择性阅读) PID算法学习笔记 参考:PID基础入门教程 一.位式控制算法 1.1 位式控制算法原理 位式控制算法,通过比较SV(…
例题:P5905 [模板]Johnson 全源最短路 首先考虑求全源最短路的几种方法: Floyd:时间复杂度\(O(n^3)\),可以处理负权边,但不能处理负环,而且速度很慢. Bellman-Ford:以每个点为源点做一次Bellman-Ford,时间复杂度\(O(n^2m)\),可以处理负权边,可以处理负环,但好像比Floyd还慢? dijkstra:以每个点为源点做一次dijkstra,时间复杂度\(O(nmlogm)\),不能处理负权边,但比前面两个快多了. 好像--只有dijkstr…
学这个是为了支持在带负权值的图上跑 Dijkstra. 为了这个我们要考虑把负的权值搞正. 那么先把我们先人已经得到的结论摆出来.我们考虑先用 SPFA 对着一个满足三角形不等式的图跑一次最短路,具体就是在原图的基础上建立超级源点. 然后我们把得到的这个东西称为 势能 \(h\) ,我们对于原图的每条边 \((u,v)\)的边权加上 \(h_u-h_v\),然后就可以跑 Dijkstra 了,求出的答案是 \(dis_{i,j}-h_i+h_j\).然后我们证明这样搞是对的. 首先需要证明这个搞…
Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年构思并于 1959 年发表.其解决的问题是:给定图 G 和源顶点 v,找到从 v 至图中所有顶点的最短路径. Dijkstra 算法采用贪心算法(Greedy Algorithm)范式进行设计.在最短路径问题中,对于带权有向图 G = (V, E),Dijkstra 算法的初始实现版本未使用最小优先…
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Lester Ford 分别发表于 1958 年和 1956 年,而实际上 Edward F. Moore 也在 1957 年发布了相同的算法,因此,此算法也常被称为 Bellman-Ford-Moore 算法. Bellman-Ford 算法和 Dijkstra 算法同为解决单源最短路径的算法.对于带权有向…