FlinkSQL写入Kafka/ES/MySQL示例-JAVA】的更多相关文章

一.背景说明 Flink的API做了4层的封装,上两层TableAPI.SQL语法相对简单便于编写,面对小需求可以快速上手解决,本文参考官网及部分线上教程编写source端.sink端代码,分别读取socket.kafka及文本作为source,并将流数据输出写入Kafka.ES及MySQL,方便后续查看使用. 二.代码部分 说明:这里使用connect及DDL两种写法,connect满足Flink1.10及以前版本使用,目前官方文档均是以DDL写法作为介绍,建议1.10以后的版本使用DDL写法…
目录 Java读文件写入kafka 文件格式 pom依赖 java代码 Java读文件写入kafka 文件格式 840271 103208 0 0.0 insert 84e66588-8875-4411-9cc6-0ac8302408bf 3 2 4 wangxiao 0.0 0 0.0 9927525 1619330049000 normal 1bd221d7380546be9fe8e10a63cf8130 0 0 NULL 0 0 Qw== 4253976 79 840271 103208…
1.两种方式管理偏移量并将偏移量写入redis (1)第一种:rdd的形式 一般是使用这种直连的方式,但其缺点是没法调用一些更加高级的api,如窗口操作.如果想更加精确的控制偏移量,就使用这种方式 代码如下 KafkaStreamingWordCountManageOffsetRddApi package com._51doit.spark13 import com._51doit.utils.JedisConnectionPool import org.apache.kafka.clients…
原文链接:http://www.sjsjw.com/kf_cloud/article/020376ABA013802.asp 目的 实时监听某目录下的日志文件,如有新文件切换到新文件,并同步写入kafka,同时记录日志文件的行位置,以应对进程异常退出,能从上次的文件位置开始读取(考虑到效率,这里是每100条记一次,可调整) 源码: import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File;…
使用java实现Kafka的消费者 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 8…
目的 实时监听多个目录下的日志文件,如有新文件切换到新文件,并同步写入kafka,同时记录日志文件的行位置,以应对进程异常退出,能从上次的文件位置开始读取(考虑到效率,这里是每100条记一次,可调整) 源码 import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundExce…
目的 实时监听某目录下的日志文件,如有新文件切换到新文件,并同步写入kafka,同时记录日志文件的行位置,以应对进程异常退出,能从上次的文件位置开始读取(考虑到效率,这里是每100条记一次,可调整)   源码: import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundEx…
1. 写在前面 Flink被誉为第四代大数据计算引擎组件,即可以用作基于离线分布式计算,也可以应用于实时计算.Flink的核心是转化为流进行计算.Flink三个核心:Source,Transformation,Sink.其中Source即为Flink计算的数据源,Transformation即为进行分布式流式计算的算子,也是计算的核心,Sink即为计算后的数据输出端.Flink Source原生支持包括Kafka,ES,RabbitMQ等一些通用的消息队列组件或基于文本的高性能非关系型数据库.而…
storm集成kafka的应用,从kafka读取,写入kafka by 小闪电 0前言 storm的主要作用是进行流式的实时计算,对于一直产生的数据流处理是非常迅速的,然而大部分数据并不是均匀的数据流,而是时而多时而少.对于这种情况下进行批处理是不合适的,因此引入了kafka作为消息队列,与storm完美配合,这样可以实现稳定的流式计算.下面是一个简单的示例实现从kafka读取数据,并写入到kafka,以此来掌握storm与kafka之间的交互. 1程序框图 实质上就是storm的kafkasp…
目录 SparkSQL读取Kudu,写出到Kafka 1. pom.xml 依赖 2.将KafkaProducer利用lazy val的方式进行包装, 创建KafkaSink 3.利用广播变量,将KafkaProducer广播到每一个executor SparkSQL读取Kudu,写出到Kafka 背景:通过spark SQL读kudu表,写入到kafka 参考:1.spark向kafka写入数据 2.通过Spark向Kafka写入数据 1. pom.xml 依赖 <dependencies>…