【HDOJ】1695 GCD】的更多相关文章

莫比乌斯反演简单题目. /* 1695 */ #include <iostream> #include <string> #include <map> #include <queue> #include <set> #include <stack> #include <vector> #include <deque> #include <algorithm> #include <cstdio&…
刚开始看这个题目,觉得没法做.关键点是数据小于100.因此,可以枚举所有小于100的素因子进行位压缩.gcd就是求最小值,lcm就是求最大值.c++有时候超时,g++800ms.线段树可解. /* 3071 */ #include <iostream> #include <sstream> #include <string> #include <map> #include <queue> #include <set> #include…
一.介绍 1.什么是GCD? Grand Central Dispatch.是苹果公司开发的一套多核编程的底层API. GCD首次公布在Mac OS X 10.6,iOS4及以上也可用.GCD存在于libdispatch.dylib这个库中,iOS程序默认动态载入这个库,无需手动引入. 2.GCD工作原理 让程序平行排队的特定任务.依据可用的处理资源,安排他们在不论什么可用的处理器核心上运行任务.一个任务能够是一个Function或是一个block. GCD的底层依旧是用线程实现,只是这样能够让…
题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数.显然gcd(n-a, n)<=n, gcd(n-b, n)<=n.因此当n不为1时,当k>2时,不存在满足条件的(a,b).而当k=2时,仅存在(n, n)满足条件.因此仅剩n=1以及k=1需要单独讨论:当n = 1时,无论k为何值,均有且仅有(1,1)满足条件,此时结果为1:当k = 1时,即gcd(n-a, n)*gcd(n-b, n) = n,则令gcd(n-a, n) =…
其实是求树上的路径间的数据第K大的题目.果断主席树 + LCA.初始流量是这条路径上的最小值.若a<=b,显然直接为s->t建立pipe可以使流量最优:否则,对[0, 10**4]二分得到boundry,使得boundry * n_edge - sum_edge <= k/b, 或者建立s->t,然后不断extend s->t. /* 4729 */ #include <iostream> #include <sstream> #include <…
二进制GCD     GCD这种通用的算法相信每个OLER都会 ,辗转相除,代码只有四行 : int GCD(int a,int b){ if(b==0) return a; return GCD(b,a%b); } GCD算法使通过辗转相除法来求解两个数的最大公因数,又称欧几里得算法      可以知道:GCD(x,y)=GCD(x,y-x)      我们将b能被a整除记作a|b      那么假设z是最大公因数,那么有:             如果z|x,z|y,则z|(y-x)  (因…
http://www.lydsy.com/JudgeOnline/problem.php?id=2818 我很sb的丢了原来做的一题上去.. 其实这题可以更简单.. 设 $$f[i]=1+2 \times \phi (i) $$ 那么答案就是 $$\sum_{p是质数} f[n/p]$$ 就丢原来的题了...不写了.. #include <cstdio> #include <cstring> #include <cmath> #include <string>…
DP/四边形不等式 裸题环形石子合并…… 拆环为链即可 //HDOJ 3506 #include<cmath> #include<vector> #include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define rep(i,n) for(int i=0;i<n;++i) #define…
DP/四边形不等式 这题跟石子合并有点像…… dp[i][j]为将第 i 个点开始的 j 个点合并的最小代价. 易知有 dp[i][j]=min{dp[i][j] , dp[i][k-i+1]+dp[k+1][j-(k-i+1)]+w(i,k,j)} (这个地方一开始写错了……) 即,将一棵树从k处断开成(i,k)和(k+1,i+j-1)两棵树,再加上将两棵树连起来的两条树枝的长度w(i,k,j) 其中,$ w(i,k,j)=x[k+1]-x[i]+y[k]-y[i+j-1] $ 那么根据四边形…
DP/四边形不等式 要求将一个可重集S分成M个子集,求子集的极差的平方和最小是多少…… 首先我们先将这N个数排序,容易想到每个自己都对应着这个有序数组中的一段……而不会是互相穿插着= =因为交换一下明显可以减小极差 然后……直接四边形不等式上吧……这应该不用证明了吧? MLE了一次:这次的w函数不能再开数组去存了……会爆的,直接算就行了= =反正是知道下标直接就能乘出来. 数据比较弱,我没开long long保存中间结果居然也没爆……(只保证最后结果不会爆int,没说DP过程中不会……) //H…