underscorejs-shuffle学习】的更多相关文章

underscorejs是一个很不错的类库,我的很多项目都引用了这个类库,的确可以带来很多方便. 记得我当初学的时候,看underscorejs的api是看的一知半解的,甚至不明白api里的context代表什么意思,当然现在已经明白了. 时间已经过去两年了,现在又回过来头看underscorejs,发现自己又学到了很多,但是也发现了很多不懂的地方. 这次我把看过的方法,写了比较详细的例子,帮助当初和一样初学underscorejs的朋友. 这一部分是underscorejs里处理集合的方法,后…
转自:http://langyu.iteye.com/blog/992916,多谢分享,学习Hadopp性能调优的可以多关注一下 Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方,Shuffle的正常意思是洗牌或弄乱,可能大家更熟悉的是Java API里的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.如果你不知道MapReduce里Shuffle是什么,那么请看这张图: 这张是官方对Shuffle过程的描述.但我可以肯定的是,…
在这向大家推荐一本书-花书-动手学深度学习pytorch版,原书用的深度学习框架是MXNet,这个框架经过Gluon重新再封装,使用风格非常接近pytorch,但是由于pytorch越来越火,个人又比较执着,想学pytorch,好,有个大神来了,把<动手学深度学习>整本书用pytorch代码重现了,其GitHub网址为:https://github.com/ShusenTang/Dive-into-DL-PyTorch   原书GitHub网址为:https://github.com/d2l-…
一,在hadoop中的mapreduce的job提交过程比较繁琐,但掌握job的提交过程是我们进入深入学习的必要. 二,mapreduce的shuffle机制 三,Hadoop的HA机制.…
一.回顾Reduce阶段三大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步骤,其中在Reduce阶段总共三个步骤,如下图所示: 其中,Step2.1就是一个Shuffle操作,它针对多个map任务的输出按照不同的分区(Partition)通过网络复制到不同的reduce任务节点上,这个过程就称作为Shuffle. PS:Hadoop的shuffle过程就是从map端输出到reduce端输入之间的过程,这一段应该是Hadoop中最核心的部分,因为涉及到Had…
概述 1.MapReduce 中,mapper 阶段处理的数据如何传递给 reducer 阶段,是 MapReduce 框架中 最关键的一个流程,这个流程就叫 Shuffle 2.Shuffle: 数据混洗 ——(核心机制:数据分区,排序,局部聚合,缓存,拉取,再合并 排序) 3.具体来说:就是将 MapTask 输出的处理结果数据,按照 Partitioner 组件制定的规则分发 给 ReduceTask,并在分发的过程中,对数据按 key 进行了分区和排序 MapReduce的Shuffle…
摘抄自https://tech.meituan.com/spark-tuning-pro.html 一.概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优.但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发.资源参数以及数据倾斜,shuffle调优只能在整个Spark的性能调优中占到一小部分而已.因此大家务必把握住调优的基本…
转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内…
概述 大多数Spark作业的性能主要就是消耗在了shuffle环节,因为该环节包含了大量的磁盘IO.序列化.网络数据传输等操作.因此,如果要让作业的性能更上一层楼,就有必要对shuffle过程进行调优.但是也必须提醒大家的是,影响一个Spark作业性能的因素,主要还是代码开发.资源参数以及数据倾斜,shuffle调优只能在整个Spark的性能调优中占到一小部分而已.因此大家务必把握住调优的基本原则,千万不要舍本逐末.下面我们就给大家详细讲解shuffle的原理,以及相关参数的说明,同时给出各个参…
一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Hadoop这个开源产品的出现,打破…