refer to: http://www.stealthcopter.com/blog/2009/09/python-calculating-pi-using-random-numbers/ During my undergraduate degree I wrote a program in fortran 95 to calculate pi using random numbers. My aim is to rewrite it efficiently in python. I know…
转载自:维基百科  蒙特卡洛方法 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95 蒙特卡洛方法[编辑] 维基百科,自由的百科全书     蒙特卡洛方法(英语:Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法.是指使用随机数(或更常见的伪随机数)来…
0-故事: 蒙特卡罗方法是计算模拟的基础,其名字来源于世界著名的赌城——摩纳哥的蒙特卡罗. 蒙特卡罗一词来源于意大利语,是为了纪念王子摩纳哥查理三世.蒙特卡罗(MonteCarlo)虽然是个赌城,但很小,估计跟北京的一条街差不多大. 其思想来源于著名的蒲丰投针问题(提出用投针实验的方法求圆周率π).而后20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼(计算机之父)首先提出了这一方法. 蒲丰投针: 1777年法国科学家蒲丰提出了下述著名问题:…
蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法.是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.与它对应的是确定性算法. 这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反…
蒙特卡罗方法概述 蒙特卡罗方法又称统计模拟法.随机抽样技术,是一种随机模拟方法,以概率和统计理论方法为基础的一种计算方法,是使用随机数(或更常见的伪随机数)来解决很多计算问题的方法.将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解.为象征性地表明这一方法的概率统计特征,故借用赌城蒙特卡罗命名. 蒙特卡罗方法的基本思想 用事件发生的"频率"来决定事件的"概率".高速电子计算机使得用数学方法在计算机上大量.快速地模拟这样的试验成为…
Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte Carlo 10 JUNE 2013 This topic doesn’t have much to do with nicer code, but there is probably some overlap in interest. However, some of the topics th…
Introduction To Monte Carlo Methods I’m going to keep this tutorial light on math, because the goal is just to give a general understanding. The idea of Monte Carlo methods is this—generate some random samples for some random variable of interest, th…
1. 蒙特卡罗方法(Monte Carlo method) 0x1:从布丰投针实验说起 - 只要实验次数够多,我就能直到上帝的意图 18世纪,布丰提出以下问题:设我们有一个以平行且等距木纹铺成的地板(如图), 现在随意抛一支长度比木纹之间距离小的针,求针和其中一条木纹相交的概率.并以此概率,布丰提出的一种计算圆周率的方法——随机投针法.这就是蒲丰投针问题(又译“布丰投针问题”). 我们来看一下投针算法的步骤: 取一张白纸,在上面画上许多条间距为a的平行线 取一根长度为l(l≤a) 的针,随机地向…
History of Monte Carlo Methods - Part 1 Some time ago in June 2013 I gave a lab tutorial on Monte Carlo methods at Microsoft Research. These tutorials are seminar-talk length (45 minutes) but are supposed to be light, accessible to a general computer…
Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinforcement Learning. The biggest assumption for Model-Based learning is the whole knowledge of the environment is given, but it is unrealistic in real lif…