Multiresolution Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns, TPAMI 2002 1.简介 LBP是一种针对灰度图像任意单调变换(monotonic transformation)具有不变性的鲁棒特征算子.除了鲁棒性外,另一个突出特点就是计算量小,实现时只需在很小的邻域内使用少量的算子和查询表. 作者提出算法时,主要是想应用于二维图像纹理分析:工业表面检测…
转自http://blog.csdn.NET/ty101/article/details/8905394 本文的PDF版本,以及涉及到的所有文献和代码可以到下列地址下载: 1.PDF版本以及文献:http://download.csdn.net/detail/ty101/5349816 2.原作者的MATLAB代码:http://download.csdn.net/detail/ty101/5349894 LBP一种用来描述图像纹理特征的算子,该算子由芬兰奥卢大学的T.Ojala等人在1996年…
1. LBP 用于人脸识别 为了预测每个像素属于哪个脸部器官(眼睛.鼻子.嘴.头发),通常的作法是在该像素周围取一个小的区域,提取纹理特征(例如局部二值模式),再基于该特征利用支持向量机等浅层模型分类.因为局部区域包含信息量有限,往往产生分类错误,因此要对分割后的图像加入平滑和形状先验等约束.…
基于局部二值相似性模式(LBSP)的运动目标检测算法 kezunhai@gmail.com http://blog.csdn.net/kezunhai 本文根据论文:Improving background subtraction using local binary similarity patternsWACV2014的内容及自己的理解而成,如果想了解更多细节,请参考原文.该文章思想借鉴了VIBE,其实可以理解成是VIBE+LBP算子变种(LBSP)运动目标检测算法的组合.在VIBE中,算法…
之前接触过全局二值化(OTSU算法),还有OPENCV提供的自适应二值化,最近又了解到一种新的局部二值化算法,Sauvola算法. 转载自:http://www.dididongdong.com/archives/4048 值得注意的是,计算r×r邻域内像素值的时候,一种优化的策略是,使用OPENCV提供的积分图,计算整张图像的积分图,那么计算r×r区域内的均值可以在常数时间内实现. CV_EXPORTS_W ); 我们常见的图像二值化算法大致可分为全局阈值方法与局部阈值方法这两种类型.其中OT…
#include <opencv2/opencv.hpp> #include <iostream> #include "math.h" using namespace cv; using namespace std; Mat src, gray_src; const char* output_tt = "LBP Result"; int main(int argc, char** argv) { src = imread("test…
前言:今天他给大家带来一篇发表在CVPR 2017上的文章. 原文:LBCNN 原文代码:https://github.com/juefeix/lbcnn.torch 本文主要内容:把局部二值与卷积神经网路结合,以削减参数,从而实现深度卷积神经网络端到端的训练,也就是未来嵌入式设备上跑卷积效果将会越来越好. 主要贡献: 提出一种局部二值卷积(LBC)可以用来替代传统的卷积神经网络的卷积层,这样设计的灵感来自于局部二值模式(LBP).LBC主要由一个预先定义好的稀疏二值卷积滤波器,这个滤波器在整个…
在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 全局固定阈值很容易理解,就是对整幅图像都是用一个统一的阈值来进行二值化: 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来…
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适…
局部自适应阈值二值化 相对全局阈值二值化,自然就有局部自适应阈值二值化,本文利用Emgu CV实现局部自适应阈值二值化算法,并通过调节block大小,实现图像的边缘检测. 一.理论概述(转载自<OpenCV_基于局部自适应阈值的图像二值化>) 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适…
Local binary pattern (LBP),在机器视觉领域,是非常重要的一种特征.LBP可以有效地处理光照变化,在纹理分析,纹理识别方面被广泛应用. LBP 的算法非常简单,简单来说,就是对图像中的某一像素点的灰度值与其邻域的像素点的灰度值做比较,如下图所示: 如果邻域像素值比该点大,则赋为1,反之,则赋为0,这样从左上角开始,可以形成一个bit chain,然后将该 bit chain 转换为一个十进制的数,用表达式可以表达如下: LBPP,R(xc,yc)=∑P=0P−1s(iP−…
前言 这个降噪的模型来自 Christopher M. Bishop 的 Pattern Recognition And Machine Learning (就是神书 PRML……),问题是如何对一个添加了一定椒盐噪声(Salt-and-pepper Noise)(假设噪声比例不超过 10%)的二值图(Binary Image)去噪. 原图 -> 添加 10% 椒盐噪声的图: 放在 github 上的可运行完整代码:https://github.com/joyeecheung/simulated…
较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的.亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适应地变小.不同亮度.对比度.纹理的局部图像区域将会拥有相对应的局部二值化阈值.常用的局部自适应阈值有:1)局部邻域块的均值:2)局部邻域块的高斯加权和. /**…
重点介绍了全局二值化原理及数学实现,并利用emgucv方法编程实现. 一.理论概述(转载,如果懂图像处理,可以略过,仅用作科普,或者写文章凑字数)  1.概述 图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程. 图像的预处理在进行图像二值化操作前要对图像进行预处理,包括彩色图像灰化和增强.由于选取阈值需要参照直方图,因此在图像进行处理后,我们再获取图像的直方图以帮助选取阈值.整个流程如下所示: 读取图像→灰度图像→图像增强→图像直方图→二值化处理 2.数学原理(转载,基本可…
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的文本str格式,loc表示文本在图中的位置,font_size可以使用cv2.FONT_HERSHEY_SIMPLEX, font_scale表示文本的规格,color表示文本颜色,linestick表示线条大小 信用卡数字识别: 信用卡      数字模板涉及到的内容:主要是采用模板匹配的思想 思…
图像灰度化:将彩色图像转化成为灰度图像的过程成为图像的灰度化处理.彩色图像中的每个像素的颜色有R.G.B三个分量决定,而每个分量有255中值可取,这样一个像素点可以有1600多万(255*255*255)的颜色的变化范围.而灰度图像是R.G.B三个分量相同的一种特殊的彩色图像,其一个像素点的变化范围为255种,所以在数字图像处理种一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些.灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征.图像的灰度…
在某些图像处理当中一个关键步是二值法,二值化一方面能够去除冗余信息,另一方面也会使有效信息丢失.所以有效的二值化算法是后续的处理的基础.比如对于想要最大限度的保留下面图的中文字,以便后续的定位处理. 二值化算法包括全局二值化和局部二值化, 全局二值化具有速度快但效果相对差的特点, 局部二值化算法具有速度慢效果好的特点. 原图 全局阈值              方法一:直接采用im2bw ;手动阈值 方法二:迭代法求阈值 迭代式阈值选取的基本思路是:首先根据图像中物体的灰度分布情况,选取一个近似…
为加快处理速度,在图像处理算法中,往往需要把彩色图像转换为灰度图像,在灰度图像上得到验证的算法,很容易移植到彩色图像上.24位彩色图像每个像素用3个字节表示,每个字节对应着R.G.B分量的亮度(红.绿.蓝).当R.G.B分量值不同时,表现为彩色图像;当R.G.B分量值相同时,表现为灰度图像,该值就是我们所求的一般来说,转换公式有3种.第一种转换公式为: Gray(i,j)=[R(i,j)+G(i,j)+B(i,j)]÷3 (2.1) 其中,Gray(i,j)为转换后的灰度图像在(i,j)点处的灰…
简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY) #把输入图像灰度化 #直接阈值化是对输入的单通道矩阵逐像素进行阈值分割. ret, binary = cv.threshold(gr…
 版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介绍: Local Response Normalization(LRN)技术主要是深度学习训练时的一种提高准确度的技术方法.其中caffe.tensorflow等里面是很常见的方法,其跟激活函数是有区别的,LRN一般是在激活.池化后进行的一种处理方法.LRN归一化技术首次在AlexNet模型中提出这…
图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. python代码层面知识点: opencv中图像二值化方法: OTSU Triangle 自动和手动 自适应阈值 import cv2 as cv import numpy as np #全局阈值 def threshold_demo(image): gray =…
超大图像的二值化方法 1.可以采用分块方法, 2.先缩放处理就行二值化,然后还原大小 一:分块处理超大图像的二值化问题 def big_image_binary(image): print(image.shape) #(, , ) #超大图像,屏幕无法显示完整 cw,ch = , h,w = image.shape[:] gray = cv.cvtColor(image,cv.COLOR_RGB2GRAY) #要二值化图像,要先进行灰度化处理 ,h,ch): ,w,cw): roi = gray…
一:什么是二值图像 彩色图像:三个通道0-,-,-,所以可以有2^24位空间 灰度图像:一个通道0-,所以有256种颜色 二值图像:只有两种颜色,黑和白,1白色,0黑色 二:图像二值化 (一)先获取阈值 (二)根据阈值去二值化图像 (三)OpenCV中的二值化方法 (四)补充阈值类型 原灰度图像的像素值 1.THRESH_BINARY:过门限的值为最大值,其他值为0 2.THRESH_BINARY_INV:过门限的值为0,其他值为最大值 3.THRESH_TRUNC:过门限的值为门限值,其他值不…
__author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)------------- #二值化的方法(全局阈值 局部阈值(自适应阈值)) # OTSU #cv.THRESH_BINARY 二值化 #cv.THRESH_BINARY_INV(黑白调换) #cv.THRES_TRUNC 截断 def threshold(img): #全局阈值 gray = cv.cvtColor(img…
二值化 hreshold Applies a fixed-level threshold to each array element. C++: double threshold(InputArray src, OutputArray dst, double thresh, doublemaxval, int type) Python: cv2.threshold(src, thresh, maxval, type[, dst]) → retval, dsthighlight=cvthresho…
import cv2 as cv import numpy as np import matplotlib.pyplot as plt # 二值图像就是将灰度图转化成黑白图,没有灰,在一个值之前为黑,之后为白 # 有全局和局部两种 # 在使用全局阈值时,我们就是随便给了一个数来做阈值,那我们怎么知道我们选取的这个数的好坏呢?答案就是不停的尝试. # 如果是一副双峰图像(简 单来说双峰图像是指图像直方图中存在两个峰)呢? # 我们岂不是应该在两个峰之间的峰谷选一个值作为阈值?这就是 Otsu 二值…
一,分块处理超大图像的二值化问题   (1) 全局阈值处理  (2) 局部阈值 二,空白区域过滤 三,先缩放进行二值化,然后还原大小 np.mean() 返回数组元素的平均值 np.std() 返回数组元素的标准差 一,分块处理超大图像的二值化问题  (1) 全局阈值处理   (2) 局部阈值 1 import cv2 as cv 2 import numpy as np 3 4 """ 5 def big_image_binary(image): 6 print(image…
1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是把图像的像素转变为0或者255,只有这两个像素值.0白色 1黑色 .0是黑色,255是白色. 2.图像二值化 (1)先获取阈值 (2)根据阈值去二值化图 (3)threshold函数 ret, dst = cv2.threshold(src, thresh, maxval, type) src: 输…
不记得是怎么接触并最终研究这个课题的了,认识我的人都知道我是没有固定的研究对象的,一切看运气和当时的兴趣.本来研究完了就放在那里了,一直比较懒的去做总结,但是想一想似乎在网络上就没有看到关于这个方面的资料,能搜索到的都是一些关于matlab相关函数的应用,决定还是抽空趁自己对这个算法还有点记忆的时候写点东西吧,毕竟这个算法还有一些应用是值得回味和研究的.而且也具有一定的工程价值. 怎么说呢,其实在很早浏览matlab的图像处理工具箱的时候,就无数次的看到过这些函数,但是无奈当时不知道他们有什么用…
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现.由于篇幅有限,此处仅作一般介绍(如果想要完全了解二叉树以及其衍生出的各种算法,恐怕要写8~10篇). 1)二叉树(Binary Tree) 顾名思义,就是一个节点分出两个节点,称其为左右子节点:每个子节点又可以分出两个子节点,这样递归分叉,其形状很像一颗倒着的树.二叉树限制了每个节点最多有两个子节…