Tensorflow卷积接口总结】的更多相关文章

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 这个接口用了这么久,每次都有点迷惑,这里做下总结. 参数 input:输入图片,shape为[batch_size, in_height, in_width, in_channels] filter:卷积核参数,shape为[kernel_height, kernel_width, in_channels, out_channels],第…
Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中…
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数说明:pool_h1表示输入数据,4表示使用前后几层进行归一化操作,bias表示偏移量,alpha和beta表示系数 局部响应的公式 针对上述公式,做了一个试验代码: # 自己编写的代码, 对x的[1, 1, 1, 1]进行局部响应归一化操作,最后结果是相同的x = np.array([i for…
TensorFlow 卷积层   让我们看下如何在 TensorFlow 里面实现 CNN. TensorFlow 提供了 tf.nn.conv2d() 和 tf.nn.bias_add() 函数来创建你自己的卷积层. # Output depth k_output = # Image Properties image_width = image_height = color_channels = # Convolution filter filter_size_width = filter_s…
原文:Hands-On Convolutional Neural Networks with TensorFlow 协议:CC BY-NC-SA 4.0 自豪地采用谷歌翻译 不要担心自己的形象,只关心如何实现目标.--<原则>,生活原则 2.3.c 在线阅读 ApacheCN 面试求职交流群 724187166 ApacheCN 学习资源 目录 TensorFlow 卷积神经网络实用指南 零.前言 一.TensorFlow 的设置和介绍 二.深度学习和卷积神经网络 三.TensorFlow 中…
上次写完粗浅的BP算法 介绍 本来应该继续把 卷积神经网络算法写一下的 但是最近一直在踩 TensorFlow的坑.所以就先跳过算法介绍直接来应用场景,原谅我吧. TensorFlow 介绍 TF是google开源出来的人工智能库,由python语言写的 官网地址:http://www.tensorflow.org/   请用科学上网访问 中文地址:http://www.tensorfly.cn/ 当然还有其他AI库,不过大多数都是由python 写的 .net 的AI库叫 Accord.net…
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Tensorflow官方提供的示例. 关于神经网络与误差反向传播的原理可以参考作者的另一篇博文BP神经网络与Python实现. 工作原理 卷积是图像处理中一种基本方法. 卷积核是一个nxn的矩阵通常n取奇数, 这样矩阵就有了中心点和半径的概念. 对图像中每个点取以其为中心的n阶方阵, 将该方阵与卷积核中对应位置的值相乘, 并用它们的和作…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
卷积操作 tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 除去name参数用以指定该操作的name,与方法有关的一共五个参数: input: 指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是…
函数1:tf.nn.conv2d是TensorFlow里面实现卷积的函数,实际上这是搭建卷积神经网络比较核心的一个方法 函数原型: tf.nn.conv2d(input,filter,strides,padding,use_cudnn_on_gpu=None, Name=None) 参数解释: 第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个bat…
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, strides表示步长,分别表示为样本数,长,宽,通道数,padding表示补零操作 2. tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')  # 对数据进行池化操作 参数说明:x表示输入数据,ksize表示卷…
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_backprop_filter in an example. In tf.nn, there are 4 closely related 2d conv functions: tf.nn.conv2d tf.nn.conv2d_backprop_filter tf.nn.conv2d_backprop_i…
目录: 1. tf.placeholder_with_default(tf.constant(1.0),shape=[],name='use_dropout')   # 设置一个占位符 2. tf.constant(input, size, name) # 产生一个变量 3.tf.variable_scope(name, reuse=True)  # 设置函数的作用范围 4.tf.get_variable(name, shape)  # 设置函数变量 5.tf.nn.conv2d(i, k, […
部分内容from: Tensorflow C++ 从训练到部署(1):环境搭建 在之前的编译中,已经编译好了tensorflow_pkg相关的wheel.现在有一个需求,需要按照C++的代码进行模型加载和训练.查询资料后发现,需要重新编译一套TensorFlow支持的C++接口,主要是编译出来libtensorflow_cc.so和libtensorflow_framework.so这两个文件. bazel build -c opt --copt=-mavx --copt=-msse4.2 --…
1.知识点 """ 基础知识: 1.神经网络(neural networks)的基本组成包括输入层.隐藏层.输出层.而卷积神经网络的特点在于隐藏层分为卷积层和池化层(pooling layer,又叫下采样层) 2.卷积层:通过在原始图像上平移来提取特征,每一个特征就是一个特征映射 a)提取特征:定义一个过滤器(也称观察窗口,奇数大小,值为权重)大小,步长 b)移动越过图片: 1.VALID:不越过,直接停止观察(一般不用) 2.SAME:直接越过,则对图像零填充(paddin…
在TensorFlow中,使用tr.nn.conv2d来实现卷积操作,使用tf.nn.max_pool进行最大池化操作.通过闯传入不同的参数,来实现各种不同类型的卷积与池化操作. 卷积函数tf.nn.conv2d TensorFlow里使用tf.nn.conv2d函数来实现卷积,其格式如下: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None),参数的含义如下: input:需要进行卷积操作…
边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190602.html # TensorFlow(十):卷积神经网络实现手写数字识别以及可视化 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.rea…
#include <fstream> #include <utility> #include <Eigen/Core> #include <Eigen/Dense> #include <iostream> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensor…
#include <iostream> #include "tensorflow/cc/ops/const_op.h" #include "tensorflow/cc/ops/image_ops.h" #include "tensorflow/cc/ops/standard_ops.h" #include "tensorflow/core/framework/graph.pb.h" #include "t…
import os import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from skimage import color,data,transform,io #获取所有数据文件夹名称 fileList = os.listdir("F:\\data\\flowers") trainDataList = [] trianLabel = [] testDataList =…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池化层,实现一个卷积神经网络来进行手写数字识别,并输出卷积和池化效果. 数据准备 MNIST 数据集下载 MNIST 数据集可以从 THE MNIST DATABASE of handwritten digits 的网站直接下载. 网址:http://yann.lecun.com/exdb/mnist…
原网址:https://data-flair.training/blogs/cnn-tensorflow-cifar-10/ by DataFlair Team · Published May 21, 2018 · Updated September 15, 2018 1.目标-TensorFlow CNN 卷积神经网络 在之前的TensorFlow教程中,我们讨论了使用TensorFlow进行手写识别.今天我们讲学习怎样使用TensorFlow创建一个卷积神经网络关于CIFAR 10的分类模型…
使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为softmax概率损失值,即为交叉熵损失值 代码:使用的是mnist数据集作为分类的测试数据,数据的维度为50000*784 第一步:载入mnist数据集 第二步:超参数的设置,输入图片的大小,分类的类别数,迭代的次数,每一个batch的大小 第三步:使用tf.placeholder() 进行输入数…
使用captcha.image.Image 生成随机验证码,随机生成的验证码为0到9的数字,验证码有4位数字组成,这是一个自己生成验证码,自己不断训练的模型 使用三层卷积层,三层池化层,二层全连接层来进行组合 第一步:定义生成随机验证码图片 number = ['] # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z…
参考这篇文章安装,依次安装bazel,protocbuf,eigen3,然后下载tensorflow源码,编译c++ api,将编译结果拷贝到搜索路径 最后测试案例时遇到一些问题 (1)fatal error: absl/strings/string_view.h 解决方案,git clone https://github.com/abseil/abseil-cpp,然后把该库加到搜索目录里面 (2)对‘tensorflow::SessionOptions::SessionOptions()’未…
​原文地址:https://www.bearoom.xyz/2018/08/28/win10-build-tf-cc/ 首先,我觉得这是一个比较DT的活,因为,tensorflow支持最好的编程语言应该是python(应该说大部分深度学习框架支持的最好的语言都是Python),tensorflow的底层说是C/C++编写的,但是,感觉它对C/C++真的很不友好,有关Python的资料一查一大把,有关C/C++的一查寥寥无几,能看到的还有很多直接就照搬官网的那点少到可怜的例子...由于我可能会比较…
tensorflow1.11 bazel 0.15.2 protobuf 3.6.0 eigen 3.3.5 wget -t 0 -c https://github.com/eigenteam/eigen-git-mirror/archive/3.3.5.zip unzip 3.3.5.zip cd eigen-git-mirror-3.3.5/ mkdir build cd build cmake .. make sudo make install 编译tensorflow ./configu…
import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 def get_weight_variable(shape, regularizer): weights = tf.get_variable("weights", shape, initializer…
#-*- coding:utf- -*- import time import keras import skimage import numpy as np import tensorflow as tf import matplotlib.image as img from scipy import ndimage from skimage import color, data, transform %matplotlib inline #设置文件目录 Training = r'F:\\da…
https://www.zhihu.com/question/50030898 https://zhuanlan.zhihu.com/p/25296966 https://www.jiqizhixin.com/articles/2017-08-02…