tensorflow(一):基础】的更多相关文章

在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. 编程基础案例中主要讲解模型的保存和恢复,以及使用几个案例使我们更好的理解这一块内容. 一 保存和载入模型 1.保存模型 首先需要建立一个saver,然后在session中通过saver的save即可将模型保存起来,代码如下: ''' 1.保存模型 ''' ''' 这里是各种构建模型graph的操作,…
在第一节中我们已经介绍了一些TensorFlow的编程技巧;第一节,TensorFlow基本用法,但是内容过于偏少,对于TensorFlow的讲解并不多,这一节对之前的内容进行补充,并更加深入了解讲解TensorFlow. TesorFlow的命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算.TensorFlow是张量从图像的一端流动到另一端的计算过程,这也是TensorFlow的编程模型. TensorFlow编程基础上主要介绍session…
这一节主要来介绍TesorFlow的可视化工具TensorBoard,以及TensorFlow基础类型定义.函数操作,后面又介绍到了共享变量和图操作. 一 TesnorBoard可视化操作 TensorFlow提供了可视化操作工具TensorBoard.他可以将训练过程中的各种数据展示出来,包括标量,图片,音频,计算图,数据分布,直方图和嵌入式向量.可以通过网页来观察模型的结构和训练过程中各个参数的变化.TensorBoard不会自动把代码代码出来,其实它是一个日志展示系统,需要在session…
使用 TensorFlow 之前你需要了解关于 TensorFlow 的以下基础知识 :• 使用图 (graphs) 来表示计算 .• 在会话 ( Session ) 中执行图 .• 使用张量 (tensors) 来代表数据 .• 通过变量 ( Variables ) 维护状态 .• 使用供给 ( feeds ) 和取回 ( fetches ) 将数据传入或传出任何操作 概述 TensorFlow 是一个以图 (graphs) 来表示计算的编程系统 , 图中的节点被称之为 op(op-erati…
好久没有静下心来写点东西了,最近好像又回到了高中时候的状态,休息不好,无法全心学习,恶性循环,现在终于调整的好一点了,听着纯音乐突然非常伤感,那些曾经快乐的大学时光啊,突然又慢慢的一下子出现在了眼前,不知道我大学的那些小伙伴们现在都怎么样了,考研的刚刚希望他考上,实习的菜头希望他早日脱离苦海,小瑞哥希望他早日出成果,范爷熊健研究生一定要过的开心啊!天哥也哥早日结婚领证!那些回不去的曾经的快乐的时光,你们都还好吗! 最近开始接触Tensorflow,可能是论文里用的是这个框架吧,其实我还是觉得py…
0.tensorflow中的模型运行基础 tensorflow的运行机制属于定义和运行相分离,在操作层面可以抽象成两种:模型构建和模型运行. 在模型构建中的常见概念: 张量(tensor):数据,即某一类型的多为数组 变量(Variable):常用于定义模型中的参数,是通过不断训练得到的值 占位符(placeholder):输入变量的载体,也可以理解成模型的参数 图中的节点操作(operation,op):即一个op获得0个或多个tensor,执行得到,输出得到的tensor 计算图代表一个计算…
1.tensorflow 的计算得到的是计算图graph import tensorflow as tf a=tf.constant([1.0,2.0]) b=tf.constant([3.0,4.0]) c=a+b print(c) 结果:Tensor("add_5:0", shape=(2,), dtype=float32) 得到计算图(graph),不计算 其中shape=(2,0)表示一维 ,长度2 dtype是数据类型 若要计算, 需要用到会话session x=tf.con…
一.矩阵的基本操作 import tensorflow as tf   # 1.1矩阵操作 sess = tf.InteractiveSession() x = tf.ones([2, 3], "float32") print("tf.ones():", sess.run(x))   tensor = [[1, 2, 3], [4, 5, 6]] x = tf.ones_like(tensor) 和0", sess.run(x))   print(&quo…
简介 Tensorflow是一个深度学习框架,它使用图(graph)来表示计算任务,使用tensor(张量)表示数据,图中的节点称为OP,在一个会话(Session)的上下文中执行运算,最终产生tensor. 之所以用计算图来表示计算任务,Tensorflow的官网的一张图片就能很好的说明. tensor在数学中称为张量,表示空间,在计算图模型中就是基本的数据类型,如同我们在sklearn等机器学习框架中使用numpy的矩阵作为基本运算的数据类型一样,无论几维的矩阵都是一个张量 神经网络的前向传…
1.TensorFlow 安装:https://www.cnblogs.com/pam-sh/p/12239387.html https://www.cnblogs.com/pam-sh/p/12241942.html • 是一个开放源代码软件库,用于进行高性能数值计算• 借助其灵活的架构,用户可以轻松地将计算工作部署到多种平台(CPU.GPU.TPU)和设备(桌面设备.服务器集群.移动设备.边缘设备等)• TensorFlow™ 最初是由 Google Brain 团队(隶属于 Google…