Hive Join优化】的更多相关文章

在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化: 1. 只支持等值连接 2. 底层会将写的HQL语句转换为MapReduce,并且reduce会将join语句中除最后一个表外都缓存起来 3. 当三个或多个以上的表进行join操作时,如果每个on使用相同的字段连接时只会产生一个mapreduce 具体的优化建议: 1. 合理的设置map和reduce数量 jvm重用.可在hadoop的mapred-site.xml中…
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去reduce. 样例: select /*+MAPJOIN(b)*/ a.a1,a.a2,b.b2 from tablea a JOIN tableb b ON a.a1=b.b1 在0.7版本号后.也能够用配置来自己主动优化 set hive.auto.convert.join=true;…
大表x小表 这里可以利用mapjoin,SparkSQL中也有mapjoin或者使用广播变量能达到同样效果,此处描述HQL // 开启mapjoin并设定map表大小 set hive.auto.convert.join.noconditionaltask = true; set hive.auto.convert.; // 大表 join 小表 select * from big_table join small_table on big_table.id=small_table.id原理:将…
common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map join: set hive.auto.convert.join = true; hive.mapjoin.smalltable.filesize 默认值是25mb 执行时任务信息: 当两个表都很大时,采用cluster sort join: 懒的敲了: 实现: 优点: 采用hint实现: exp…
“国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友谊. 注意,本文讨论的hive join优化器是从hive 0.11.0版本起添加的, 本文描述了Hive查询执行计划的优化,以提高join效率并减少对用户提示的需求. Hive自动识别各种用例并对其进行优化.Hive 0.11改进了这些情况的优化器: 决策支持系统或数据仓库的简单模型是星型模型,其…
一.前述 本节主要描述Hive的优化使用,Hive的优化着重强调一个 把Hive SQL 当做Mapreduce程序去优化 二.主要优化点 1.Hive运行方式:本地模式集群模式 本地模式开启本地模式:set hive.exec.mode.local.auto=true;注意:hive.exec.mode.local.auto.inputbytes.max默认值为128M表示加载文件的最大值,若大于该配置仍会以集群方式来运行! 对于小表可以直接从从hdfs直接拿到本地计算 2.并行计算通过设置以…
一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询条件来对分区字段进行条件过滤. 2.order by语句必须包含limit输出限制. 3.限制执行笛卡尔积的查询. 二.Hive排序 1.order by:对于查询结果做全排序只允许有一个reduce处理,当数据量较大时,应慎用.严格模式下必须结合limit来使用. 2.sort by:对于单个reduc…
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,mi…
JOIN优化 1.大多数情况下,Hive会对每对Join连接对象启动一个MapReduce任务. 2.多表关联时,如果每个ON子句都使用相同的连接键的话,那么只会产生一个MapReduce Job. 3.Hive总是按照从左到右的顺序执行.Hive会假定最后一张表是最大的表,在对每行记录进行连接操作时,它会将其他表进行缓存,然后扫描最后那个表进行计算.因此一般将最大表放置最后关联.也可以提供标记,显式告知最大表 /*+STREAMTABLE(s)*/ SELECT /*+STREAMTABLE(…
https://blog.csdn.net/mrlevo520/article/details/76339075 1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合…
首先hive本质就是mapreduce,那么优化就从mapreduce开始入手. 然而mapreduce的执行快慢又和map和reduce的个数有关,所以我们先从这里下手,调整并发度. 关于map的优化: 1.调整block 作业会通过input的目录产生一个或者多个map任务.set dfs.block.size 因为没份数据都是block,而block的大小直接影响了split切分的分数,如果切分的更细一点,那么split个数会增加,那直接会影响map的增加,所以blocksize是直接影响…
常用调优测试语句 :    ①显示当前hive环境的参数值: set 参数名; 如:   hive> set mapred.map.tasks;mapred.map.tasks;   ②设置hive当前环境的参数值,但仅对本次连接有效 set 参数名 = 值; 如: hive> set mapred.map.tasks;mapred.map.tasks=2;   ④查看当前hive环境的所有参数值: set -v; ⑤重置当前hive环境的所有参数值: reset;     hive job优…
转自http://shiyanjun.cn/archives/588.html Hive是基于Hadoop平台的,它提供了类似SQL一样的查询语言HQL.有了Hive,如果使用过SQL语言,并且不理解Hadoop MapReduce运行原理,也就无法通过编程来实现MR,但是你仍然可以很容易地编写出特定查询分析的HQL语句,通过使用类似SQL的语法,将HQL查询语句提交Hive系统执行查询分析,最终Hive会帮你转换成底层Hadoop能够理解的MR Job. 对于最基本的HQL查询我们不再累述,这…
作为数据分析中经常进行的join 操作,传统DBMS 数据库已经将各种算法优化到了极致,而对于hadoop 使用的mapreduce 所进行的join 操作,去年开始也是有各种不同的算法论文出现,讨论各种算法的适用场景和取舍条件,本文讨论hive 中出现的几种join 优化,然后讨论其他算法实现,希望能给使用hadoop 做数据分析的开发人员提供一点帮助. Facebook 今年在yahoo 的hadoop summit 大会上做了一个关于最近两个版本的hive 上所做的一些join 的优化,其…
1.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,min等UDAF,不怕数据倾斜问题,hadoop在map端的汇总合并优化,使数据倾斜不成问题. count(distinct ),在数据量大的情况下,效率较低,如果是多count(…
Hive优化目标 在有限的资源下,执行效率更高 常见问题: 数据倾斜 map数设置 reduce数设置 其他 Hive执行 HQL --> Job --> Map/Reduce 执行计划 explain [extended] hql 样例 select col,count(1) from test2 group by col; explain select col,count(1) from test2 group by col; Hive表优化 分区 set hive.exec.dynami…
Hive--join的使用 hive中常用的join有:inner join.left join .right join .full join.left semi join.cross join.mulitiple 在hive中建立两张表,用于测试: hive> select * from rdb_a; OK 1 lucy 2 jack 3 tony hive> select * from rdb_b; OK 1 12 2 22 4 32 一.基本join使用 1.内关联([inner] jo…
Hive的优化主要分为:配置优化.SQL语句优化.任务优化等方案.其中在开发过程中主要涉及到的可能是SQL优化这块. 优化的核心思想是: 减少数据量(例如分区.列剪裁) 避免数据倾斜(例如加参数.Key打散) 避免全表扫描(例如on添加加上分区等) 减少job数(例如相同的on条件的join放在一起作为一个任务) HQL语句优化 1. 使用分区剪裁.列剪裁 在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在Where后面,那么就会先全表关联,之后再过滤. select a.* from a…
问题导读:1.如何理解列裁剪和分区裁剪?2.sort by代替order by优势在哪里?3.如何调整group by配置?4.如何优化SQL处理join数据倾斜?Hive作为大数据领域常用的数据仓库组件,在平时设计和查询时要特别注意效率.影响Hive效率的几乎从不是数据量过大,而是数据倾斜.数据冗余.job或I/O过多.MapReduce分配不合理等等.对Hive的调优既包含对HiveQL语句本身的优化,也包含Hive配置项和MR方面的调整.目录 列裁剪和分区裁剪 谓词下推 sort by代替…
1.数据准备 mysql> select * from student; +----+--------+----------+---------+-------------+ | id | name   | idCardNo | isCadre | nickname    | +----+--------+----------+---------+-------------+ |  1 | Tom    | 350020   |       1 | Big T       | |  2 | Ji…
这篇博文讲述如何优化扫描速度.我们通过MySQL的JOIN(二):JOIN原理得知了两张表的JOIN操作就是不断从驱动表中取出记录,然后查找出被驱动表中与之匹配的记录并连接.这个过程的实质就是查询操作,想要优化查询操作,建索引是最常用的方式.那索引怎么建呢?我们来讨论下,首先插入测试数据. CREATE TABLE t1 ( id INT PRIMARY KEY AUTO_INCREMENT, type INT ); SELECT COUNT(*) FROM t1; +----------+ |…
这篇博文讲述如何优化JOIN查询带有排序的情况.大致分为对连接属性排序和对非连接属性排序两种情况.插入测试数据. CREATE TABLE t1 ( id INT PRIMARY KEY AUTO_INCREMENT, type INT ); SELECT COUNT(*) FROM t1; +----------+ | COUNT(*) | +----------+ | +----------+ CREATE TABLE t2 ( id INT PRIMARY KEY AUTO_INCREME…
最近被朋友问到有关于Hive Join的问题,保守回答过后,来补充补充知识: Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 一.Hive支持哪些连接 来自官网的截图: 二.Hive五种连接 INNER JOIN:返回两张表中关联条件为"真"的记录: LEFT JOIN(LEFT OUTER JOIN):返回左表中所有的记录,加上右表中匹配的记录,如果条件不匹配,则返回NULL: RIGHT JOIN(RIGHT OUTER JO…
1.HIVE基本操作: [一起学Hive]之十一-Hive中Join的类型和用法 注:HIve不支持非等值连接: 什么是等值连接: //Oracle SQL 不等值连接 //通过不等值连接查找7788号员工可以去非本人出生地参加工作的地方. SELECT emp.empno,emp.ename,dept.loc FROM emp INNER JOIN dept ON emp.deptno <> dept.deptno WHERE empno=7788 ORDER BY EMPNO 结果:EMP…
MySQL的JOIN(四):JOIN优化实践之快速匹配 优化原则:小表驱动大表,被驱动表建立索引有效,驱动表建立索引基本无效果.A left join B :A是驱动表,B是被驱动表:A right join B,B是驱动表,A是被驱动表,A jion B,sql优化器会自动优化,实现小表驱动大表. 这篇博文讲述如何优化扫描速度.我们通过MySQL的JOIN(二):JOIN原理得知了两张表的JOIN操作就是不断从驱动表中取出记录,然后查找出被驱动表中与之匹配的记录并连接.这个过程的实质就是查询操…
原网址:https://blog.csdn.net/liyaohhh/article/details/50697519 hive在实际的应用过程中,大部份分情况都会涉及到不同的表格的连接, 例如在进行两个table的join的时候,利用MR的思想会消耗大量的内存,磁盘的IO,大幅度的影响性能,因为shuffle真的好令人担心啊,总之,就是各种问题都是由他产生的. 下面介绍一下涉及hive在join的时候的优化方式. 第一:在map端产生join         mapJoin的主要意思就是,当链…
一.本课程是怎么样的一门课程(全面介绍)    1.1.课程的背景       作为企业Hadoop应用的核心产品,Hive承载着FaceBook.淘宝等大佬 95%以上的离线统计,很多企业里的离线统计甚至全由Hive完成,如我所在的电商.       Hive在企业云计算平台发挥的作用和影响愈来愈大,如何优化提速已经显得至关重要.       Hive作业的规模决定着优化层级,一个Hive作业的优化和一万的Hive作业的优化截然不同.       拥有1万多个Hive作业的大电商如何进行Hiv…
一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map,Reduce,Spill,Shuffle,Sort等多个阶段,所以针对Hive查询的优化可以大致分为针对MR中单个步骤的优化(其中又会有细分),针对MR全局的优化,和针对整个查询(多MRJob)的优化,下文会分别阐述. 在开始之前,先把MR的流程图帖出来(摘自Hadoop权威指南),方便后面对照.另外要说明的是,这个优化只是针对Hive 0.9版本,而不是后来Hortonwork发起Stinger项…
0. 说明 在 Hive 中,数据库是一个文件夹,表也是文件夹 partition,是一个字段,是文件 前提:在 Hive 进行 where 子句查询的时候,会将条件语句和全表进行比对,搜索出所需的数据,性能极差,partition 就是为了避免全表扫描 bucket(桶表) 避免多级分区导致分区目录过多,以指定字段进行 hash 分桶 新型数据结构,以文件段的形式在分区表内部按照指定字段进行分隔 重要特性:优化 join 的速度 1. 分区 1.1 创建非分区表 user_nopar crea…
hive.optimize.cp=true:列裁剪hive.optimize.prunner:分区裁剪hive.limit.optimize.enable=true:优化LIMIT n语句hive.limit.row.max.size=1000000:hive.limit.optimize.limit.file=10:最大文件数 1. 本地模式(小任务):需要满足以下条件: 1.job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默…