今天我们剖析的也是推荐领域的经典论文,叫做Wide & Deep Learning for Recommender Systems.它发表于2016年,作者是Google App Store的推荐团队.这年刚好是深度学习兴起的时间.这篇文章讨论的就是如何利用深度学习模型来进行推荐系统的CTR预测,可以说是在推荐系统领域一次深度学习的成功尝试. 著名的推荐模型Wide & deep就是出自这篇论文,这个模型因为实现简单,效果不俗而在各大公司广泛应用.因此它同样也可以认为是推荐领域的必读文章之…
写在前面:据说下周就要xxxxxxxx, 吓得本宝宝赶紧找些广告的东西看看 gbdt+lr的模型之前是知道怎么搞的,dnn+lr的模型也是知道的,但是都没有试验过 深度学习在美团点评推荐平台排序中的运用 原创 2017-07-28 潘晖 美团点评技术团队 美团点评作为国内最大的生活服务平台,业务种类涉及食.住.行.玩.乐等领域,致力于让大家吃得更好,活得更好,有数亿用户以及丰富的用户行为.随着业务的飞速发展,美团点评的用户和商户数在快速增长.在这样的背景下,通过对推荐算法的优化,可以更好的给用户…
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…
背景 在CTR预估任务中,线性模型仍占有半壁江山.利用手工构造的交叉组合特征来使线性模型具有"记忆性",使模型记住共现频率较高的特征组合,往往也能达到一个不错的baseline,且可解释性强.但这种方式有着较为明显的缺点:首先,特征工程需要耗费太多精力.其次,因为模型是强行记住这些组合特征的,所以对于未曾出现过的特征组合,权重系数为0,无法进行泛化. 为了加强模型的泛化能力,研究者引入了DNN结构,将高维稀疏特征编码为低维稠密的Embedding vector,这种基于Embeddin…
这篇博客会介绍点云的基本知识,重点介绍最近两年发表的部分经典论文,有什么建议欢迎留言! 点云基本介绍 点云是某个坐标系下的点的数据集,包含了丰富的信息,可以是三维坐标X,Y,Z.颜色.强度值.时间等等.下面两张图分别展示了点云在三维空间可视化以后的效果和数据格式.点云的数据获取方式有很多种,比较常见的是三维激光扫描仪进行数据采集,它有三大类: 星载(星载LiDAR采用卫星平台,运行轨道高.观测视野广,基本可以测量到地球的每一个角落,为三维控制点和数字高程模型的获取提供了新的途径,有些星载激光雷达…
本文记录几个在广告和推荐里面rank阶段常用的模型.广告领域机器学习问题的输入其实很大程度了影响了模型的选择,因为输入一般维度非常高,稀疏,同时包含连续性特征和离散型特征.模型即使到现在DeepFM类的方法,其实也都很简单.模型的发展主要体现于对特征的充分挖掘上,比如利用低阶和高阶特征.尝试自动学习交叉特征而非手动.尝试更精准地实现高阶特征(bounded-degree). 广告相关的领域最早大行其道的模型当属LR模型,原因就是LR模型简单,可解释性好,拓展性高,精心细调之后模型效果也会非常好.…
推荐系统模型演化 LR-->GBDT+LR FM-->FFM-->GBDT+FM|FFM FTRL-->GBDT+FTRL Wide&DeepModel (Deep learning era) 将从以下3方面进行模型分析: 1.why(模型设计背后的原理) 2.how(具体怎么设计,如何应用) 3.discussion(模型讨论) Wide&Deep why Memorization 和 Generalization 假如你设计了一个外卖推荐系统gugu,用户睡觉醒…
目录 1.Memory Networks 框架 流程 损失函数 QA 问题 一些扩展 小结 2.End-To-End Memory Networks Single Layer 输入模块 算法流程 Multiple Layer 网络参数设置细节 QA 问题 3 Key-Value Memory Networks 4 Dynamic Memory Networks Input Module Question Module Episodic Memory Module Attention mechan…
前言: 这是实例分割中的一篇经典论文,以往的实例分割模型都比较复杂,这篇论文提出了一个简单且直接的实例分割模型,如何设计这种简单直接的模型且要达到一定的精度往往会存在一些困难,论文中有很多思路或思想值得借鉴,因此十分值得一读. 在本文中,为让各个方向的读者都能看得懂并抓住重点,较为详细地介绍了本文的创新或改进思路,而对一些细节不予赘述. 论文:SOLO: Segmenting Objects by Locations* 代码:https://git.io/AdelaiDet Introducti…
​ 前言: 目标检测的预测框经过了滑动窗口.selective search.RPN.anchor based等一系列生成方法的发展,到18年开始,开始流行anchor free系列,CornerNet算不上第一篇anchor free的论文,但anchor freee的流行却是从CornerNet开始的,其中体现的一些思想仍值得学习. 看过公众号以往论文解读文章的读者应该能感觉到,以往论文解读中会有不少我自己的话来表述,文章写得也很简练.但这篇论文的写作实在很好,以至于这篇解读文章几乎就是对论…