POJ 3892 RSA Factorization】的更多相关文章

题目地址:http://poj.org/problem?id=3892 题目大意:RSA分解. 这儿的N比较大,要用高精度,如果一般的肯定分解不了,但是这儿有一个限制 |q-kp|<=100000 解题报告: 假设q-kp=V 那么q=kp+V 代入n=pq n=p*(kp+V) k*p*p+V*p-n=0 解这个方程即可. 在枚举V的时候 判别式=V*V+4kn 我们可以先计算出一个最大的值T T*T<=4kn 然后枚举V 如果V*V+4kn>T*T 那么T++ 如果V*V+4kn&l…
ACdrea  1217---高斯消元 Description The following problem is somehow related to the final stage of many famous integer factorization algorithms involved in some cryptoanalytical problems, for example cracking well-known RSA public key system. The most po…
Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901). Input The only line contains the two natur…
标题效果:鉴于m整数,之前存在的所有因素t素数.问:有多少子集.他们的产品是数量的平方. 解题思路: 全然平方数就是要求每一个质因子的指数是偶数次. 对每一个质因子建立一个方程. 变成模2的线性方程组. 求解这个方程组有多少个自由变元.答案就是 2^p - 1 .(-1是去掉空集的情况) 注意因为2^p会超出数据范围所以还须要用高精度算法. 200. Cracking RSA time limit per test: 0.25 sec. memory limit per test: 65536…
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=200 200. Cracking RSA time limit per test: 0.25 sec.memory limit per test: 65536 KB input: standardoutput: standard The following problem is somehow related to the final stage of many famous intege…
http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p…
Factorization or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is a factorization of the integer 15, and (x – 2)(x + 2) i…
目录 1. 介绍 polynomially larger 2. 连分数背景知识 3. 连分数算法 4. 连分数算法在RSA中的应用 5. 例子 6. 对RSA连分数攻击的反制 7. 对于攻击的改进 8. 未解决的问题 9. 总结 1. 介绍 从RSA公钥加密系统的所有密钥对的集合中,一些密钥对有着可以被各种密码分析攻击利用的性质.这些攻击一些利用模量(N)中的弱点来进攻,而另一些则利用公钥或私钥的弱点.这篇文章所讨论的弱点是可以在模量长度上和多项式时间内完成攻击的的弱点(The weakness…
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 加密和解密是自古就有技术了.经常看到侦探电影的桥段,勇敢又机智的主角,拿着一长串毫无意义的数字苦恼,忽然灵光一闪,翻出一本厚书,将第一个数字对应页码数,第二个数字对应行数,第三个数字对应那一行的某个词.数字变成了一串非常有意义的话: Eat the beancurd with the peanut. Taste like the ham. 主角喜极而泣…… 这种加密方法是将原来的…
最近有一个工作是需要把数据用RSA发送给Java 虽然一开始标准公钥 net和Java  RSA填充的一些算法不一样 但是后来这个坑也补的差不多了 具体可以参考 http://www.cnblogs.com/dudu/p/csharp-openssl-encrypt-decrypt.html 但是别人给我直接一串10进制的数字 然后我又查了一些.net 有一个RSAParameters的类, 我尝试把 modulus 转成Base64 然后生成 RSAParameters对象 然后 使用RSAC…