Python-Numpy函数-tile函数】的更多相关文章

tile函数位于python模块numpy.lib.shape_base中,他的功能是重复某个数组. 函数的形式是tile(A,reps) 函数参数说明中提到A和reps都是array_like的,什么是array_like的parameter呢?在网上查了一下,始终搞不明白,便把熟悉的python数据类型都试了一下,得出以下结论. A的类型众多,几乎所有类型都可以:array, list, tuple, dict, matrix以及基本数据类型int, string, float以及bool类…
Numpy的tile(A, reps)函数,就是将原矩阵横向.纵向地复制.tile是瓷砖的意思,顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 举个例子,原矩阵:  横向铺展:  纵向铺展: 横向铺展+纵向铺展: 最后再让我们来看看源码是怎么解释的: Construct an array  by repeating A the number of times given by reps. 顾名思义就是通过重复/循环 A reps次来构建一个数组.…
1.tile函数: tile函数是模板numpy.lib.shape_base中的函数.函数的形式是tile(A,reps) A的类型几乎所有类型都可以:array, list, tuple, dict, matrix以及基本数据类型int, string, float以及bool类型. reps的类型也很多,可以是tuple,list, dict, array, int,bool.但不可以是float, string, matrix类型.行列重复copy的次数. 例子: >>> til…
tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组.比如tile(A,n),功能是将数组A重复n次,构成一个新的数组,我们还是使用具体的例子来说明问题: 先来引入numpy下的所有方法 我们创建一个a,如图下图,使用tile来创建b,注意看b的数据结构 假如我们输入一个元组(1,2),我们会得到一样的结果,与上面相同的b 当然,我们想要a变为一个二维数组,就要换一种重复的方式了. b = tile(a,(m,n)):即是把a数组里面的元素复制n次…
在Numpy对矩阵的转置中,我们可以用transpose()函数来处理. 这个函数的运行是非常反常理的,可能会令人陷入思维误区. 假设有这样那个一个三维数组(2*4*2): array ([[[ 0, 1, 2, 3],               [ 4, 5, 6, 7]], [[ 8, 9, 10, 11],            [12, 13, 14, 15]]]) (1). 错误的观点 我们通常的想法是 从x轴看去,0, 1 ,2 ,3 从y轴看去,0,4 从z轴看去,0, 8 这样…
#MXNET的N*C*H*W在numpy打印时比较直观#mxnet卷积层# 输入数据格式是:batch * inchannel * height * width# 输出数据格式是:batch * outchannel * height * width# 权重格式: output_channels * in_channels * height * width #tensorflow计算卷积# 输入数据格式是:batch * height * width * inchannel# 输出数据格式是:b…
函数形式: tile(A,rep) 功能:重复A的各个维度 参数类型: - A: Array类的都可以,即A是一个ndarry数组- rep:A沿着各个维度重复的次数,表示变成的矩阵的形状,例如rep=(2,2,3)表示把A当成一个元素,形成一个(2,2,3) 形状的数组. 例: >>>A=np.array([0.8,1.1]) >>>np.tile(A,3) array([ 0.8, 1.1, 0.8, 1.1, 0.8, 1.1]) >>>np.t…
在学习机器学习实教程时,实现KNN算法的代码中用到了numpy的tile函数,因此对该函数进行了一番学习: tile函数位于python模块 numpy.lib.shape_base中,他的功能是重复某个数组.比如tile(A,n),功能是将数组A重复n次,构成一个新的数组 print(tile([0,0],1)) [0 0] print(tile([0,0],2)) [0 0 0 0] print(tile([0, 0], 4)) [0 0 0 0 0 0 0 0] print(tile([0…
关于Python Numpy库基础知识请参考博文:https://www.cnblogs.com/wj-1314/p/9722794.html Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的mat…
Numpy的tile()函数,就是将原矩阵横向.纵向地复制.tile是瓷砖的意思, 顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 例1: 解释:b是一个数, 在同一个列表中把a横向铺展了21遍. 例2: 例3: 解释:相当于拓展至3行.…