MT【200】一道自招的不等式】的更多相关文章

(2018武汉大学自招)设$x,y,z\ge0,xy+yz+zx=1$证明:$\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\ge \dfrac{5}{2}$ 证明:\begin{align*}\textbf{原式} & \iff 2\sum{(y+z)(z+x)}-5\prod(x+y)\ge0\\ & \iff 2\sum{z^2+(x+y)z+xy}-5\left((x+y+z)(xy+yz+zx)-xyz\right)\ge0\\ &…
评:这是一道浙江省省赛题,这里利用对称性,设$x\le y\le z$从而解决了问题.值得注意的是此处三元轮换对称正好也是完全对称,但如果变成一般的$n\ge4$元对称问题时,就不能设大小关系.事实上有如下难题: 解答:…
当$x,y\ge0,x+y=2$时求下面式子的最小值:1)$x+\sqrt{x^2-2x+y^2+1}$2)$\dfrac{1}{5}x+\sqrt{x^2-2x+y^2+1}$ 解:1)$P(x,y)$为直线$x+y=2$上一点,点$H$为$P$到$y$轴的投影点, 设$A(1,0)$则$A$关于$x+y=2$的对称点$A'(2,1)$ 故$x+\sqrt{x^2-2x+y^2+1}=|PH|+|PA|= |PH|+|PA'|\ge2$2)$\dfrac{1}{5}x+\sqrt{x^2-2x…
评:证明时对求导要求较高,利用这个观点,对平时熟悉的调和平均,几何平均,算术平均,平方平均有了更深 刻的认识.…
contest link Official Editorial 比赛体验--之前做题的时候感觉 AtCoder 挺快的,现在打了VP之后发现还是会挂的--而且不是加载缓慢或者载不出来,直接给你一个无法访问,干脆利落.所以要打比赛的趁早把几道题都打开. 不过好消息是我发现我的垃圾英语水平看这个题面不成问题( 顺便,如果需要翻译的话,GoldenDict 是真的好用 A - Biscuits problem link Description There are \(N\) bags of biscu…
B. Beautiful Paintings time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output There are n pictures delivered for the new exhibition. The i-th painting has beauty ai. We know that a visitor becomes…
建图思路很明确,拆点跑最大匹配,但这明显是个二分图的题题解居然只有一篇匈牙利算法. 发一种和之前那篇匈牙利思路略有不同的题解. 本题的难点就是如何输出,那么我们不妨在建图的时候加入一个原则,即:连边时位于左图的顶点编号小于位于右图的. 也就是说,形如左图的边是允许的,而形如右图的边是不允许的. 这很好理解吧~ 在输出的时候,只要不停往上找即可. 上代码 #include<stdio.h> int n,m,e[200][200],vis[200],mt[200],p[200]; int dfs(…
已知$x_1^2+x_2^2+\cdots+x_6^2=6,x_1+x_2+\cdots+x_6=0,$证明:$x_1x_2\cdots x_6\le\dfrac{1}{2}$ 解答:显然只需考虑2个非负4个非正(或者2非正4非负)的情况.不妨设$x_1,x_2\ge0;x_3,x_4,x_5,x_6\le0$,记$a_1=x_1,a_2=x_2,a_k=-x_k (k=3,4,5,6)$则题目变为已知$a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2=6,a_1+a_2=…
设$a,b,c>0,$满足$a+b+c\le abc$证明:$\dfrac{1}{\sqrt{1+a^2}}+\dfrac{1}{\sqrt{1+b^2}}+\dfrac{1}{\sqrt{1+c^2}}\le\dfrac{3}{2}$ 证明:设$a=\dfrac{1}{x},b=\dfrac{1}{y},c=\dfrac{1}{z}$由$a+b+c\le abc$知$xy+yz+zx\le 1$\begin{align}\label{} \sum\dfrac{1}{\sqrt{1+a^2}}…