SPSS-方差分析】的更多相关文章

1.overall:一切的,全面地 单因素方差分析:分析--比较均值--单因素ANOVA.多因素方差分析:分析--一般线性模型--单变量. 单因素方差分析和单变量方差分析区别:单因素针对的是自变量(自变量只有一个),而单变量针对的是因变量(因变量只有一个),而多变量表示有多个因变量. 2.…
t检验可以解决单样本.两个样本时的均值比较问题,但是对于两个以上样本,就不能用t检验了,而要使用方差分析.t检验是借助t分布,方差分析是借助F分布,基于变异分解的思想进行. 在算法上,由于线性模型的引入,在SPSS中,方差分析在比较均值.一般线性模型菜单中都可以做. 在适用条件上,方差分析和两独立样本t检验一样,也分别是独立性.正态性.方差齐性. 方差检验的原假设是: n个样本均值相同或n个样本来自同一个总体或自变量对因变量没有影响 由于是两组以上样本进行分析,那么方差分析除了要说明多个样本均值…
还记得上学那会老师专门敲了黑板,强调方差分析很重要..单因素方差分析(Analysis of Variance, ANOVA),如果变量多,就是多因素方差分析,还需要考虑到多重共线性, 也就是线性代数里的那些知识了. 现在写paper,基本上要用两种不同的方法做数据分析相互验证.比如用R和SPSS或者SAS,DPS之类. 但不论用什么方法,基本原理都是一样的,结果应该也一样. 首先,做方差分析的三大前提条件: 1.独立性 各样本必须是相互独立的随机样本 样本含量尽可能相等或相差不大 2.正态性…
为什么要进行方差分析? 单样本.两样本t检验其最终目的都是分析两组数据间是否存在显著性差异,但如果要分析多组数据间是否存在显著性差异就很困难,因此用方差分析解决这个问题:举例:t检验可以分析一个班男女的入学成绩差异:而方差分析可以分析一个班来自各省市地区同学的入学成绩. 在方差分析中,涉及到控制变量和随机变量以及观测变量:举例:施肥量是否会给农作物产量带来显著影响:这里,控制变量:施肥量,观测变量:农作物产量,随机变量:天气.温度…… 单因素分析 目的:分析单一控制因素影响下的多组样本的均值是否…
SPSS分析技术:多元方差分析 下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析.多元方差分析实质上是单因变量方差分析(包括单因素和多因素方差分析)的发展和推广,适用于自变量同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异. 分析原理 多元方差分析可以看做是多因素方差分析和协方差分析合并后的拓展,能够一次性做两个以上因变量的多因素方差分析和协方差分析.多元方差分析的优点是可以在…
SPSS统计分析案例:无空白列重复正交试验设计方差分析 前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例.然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要求能够灵活控制影响因素和水平的个数,以及试验的次数. 正交设计招数虽只有一招,但却变化多端,有多重不同应用方式,无空白列重复正交设计就是其中的一个变式. 一 案例数据 某制药厂主要生产胃蛋白酶,为了提高生产效率,拟从生产工艺上进行优化改进,你被要求负责该项目.根据多年的生产经验,你认为影响生产效率的…
之前的单因素方差分析和多因素方差分析,都在针对一个因变量,而实际工作中,经常会碰到多个因变量的情况,如果单纯的将其拆分为多个单因变量的做法不妥,需要使用多元方差分析或因子分析 多元方差分析与一元方差分析本质区别是:一元方差分析是组间均方与组内均方进行比较,而多元方差分析时组间方差协方差矩阵与组内方差协方差矩阵进行比较,这也解释了为何不做多次的一元方差分析,因为一元方差分析不能分析出自变量对多个因变量的协方差结构模式的影响,而多元方差分析同时考察多个因变量而不是一个,把多个因变量看做一个整体联合分…
1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态分布N(μ1,∑),N(μ2,∑),欲检验 H0:μ1=μ2 H1:μ1≠μ2 分别计算出两样本每个变量的均值构成的均向量X.Y及合并的组内协方差阵S,则统计量T2为 其中,S=(Lx+Ly)/(n+m-2),为合并协方差矩阵,分别为两样本的离差阵,即: 求得T2后,可查相应界值表得到P值,从而作出…
在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量:一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意是内容而不是结果,只要操作正确,结果应该是一致的,而输出内容的差异则反映了两种方法的侧重点不同,那么两种方法有何异同以及使用时该如何选择呢?可以从下几个方面进行探讨 一.基本思路不同 重复度量:重复度量的分析思路还是是基于传统的方差分析思想,即变异分解,只不过在分解时加入了对象间变异和对象间与时间交互作用的变异两部分,模型还是一般线性模型…
我们前面介绍的一般线性模型.Logistic回归模型.对数线性模型.Poisson回归模型等,实际上均属于广义线性模型的范畴,广义 线性模型包含的范围非常广泛,原因在于其对于因变量.因变量的概率分布等条件的限制放宽,使其应用范围加大. 广义线性模型由以下几个部分组成 1.因变量广义线性模型的因变量还是要去独立性,但是分布不再局限于正态分布一种,而是可以是指数族概率分布的任意一种,其方差也可 以不稳定,但必须要能表达为依赖均值的函数 2.线性部分广义线性模型因变量与自变量必须为线性关系,即因变量与…