BZOJ 3516 国王奇遇记加强版(乱推)】的更多相关文章

题意 求\(\sum_{k=1}^{n}k^mm^k (n\leq1e9,m\leq1e3)\) 思路 在<>中有一个方法用来求和,称为摄动法. 我们考虑用摄动法来求这个和式,看能不能得到比较好的复杂度. 首先令\(f(i)=\sum_{k=1}^nk^im^{k}\). 然后开始表演 \[ \begin{align*} (m-1)f(i)&=\sum_{k=1}^nk^im^{k+1}-\sum_{k=1}^nk^im^k \\ &=\sum_{k=1}^{n+1}(k-1)…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.php?id=3516 题解:http://blog.miskcoo.com/2014/06/bzoj-3157 没管 O(m) 的方法…… UPD(2019.2.20):这样构造的思想大概是想要用 \( f(j) \) (j<=i) 来表示出 \( f(i) \) . 考虑 \( f(m)=\sum…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3157 https://www.lydsy.com/JudgeOnline/problem.php?id=3516 这篇博客写得太好:http://blog.miskcoo.com/2014/06/bzoj-3157 然而目前之会 \( O(m) \) 的做法: 感觉关键是设计 \( S_{i} \),把它设在 \( m \) 那一维上很妙,毕竟 \( i^{m} \) 不太好做: 然而推式…
果然我数学不行啊,题解君: http://www.cnblogs.com/zhuohan123/p/3726933.html const h=; var fac,facinv,powm,s:..]of int64; n,m:int64; function mexp(a,b:int64):int64; begin ); mexp:=sqr(mexp(a,b>>))mod h; = then mexp:=mexp*a mod h; end; function C(n,r:int64):int64;…
令\[S_i=\sum_{k=1}^n k^i m^k\]我们有\[\begin{eqnarray*}(m-1)S_i & = & mS_i - S_i \\& = & \sum_{k=1}^n k^i m^{k+1} - \sum_{k=1}^n k^i m^k \\& = & \sum_{k=2}^{n+1} (k-1)^i m^k - \sum_{k=1}^n k^i m^k \\& = & n^i m^{n+1} + \sum_{k=…
Link: BZOJ 3157 传送门 Solution: 题意:求解$\sum_{i=1}^n m^i \cdot {i^m}$ $O(m^2)$做法: 定义一个函数$f[i]$,$f[i]=\sum_{i=1}^n k^i \cdot {m^k}$ $(m-1)\cdot f(i)=\sum_{k=1}^n k^i \cdot m^{k + 1} - \sum_{k=1}^n k^i \cdot m^k$ $= \sum_{k=1}^{n+1} (k - 1)^i\cdot m^k - \s…
题面:BZOJ3157 一句话题意: 求: \[ \sum_{i=1}^ni^m\ \times m^i\ (mod\ 1e9+7)\ \ (n \leq 1e9,m\leq200)\] 题解 令 \[ DP[i]=\sum_{k=1}^n k^i*m^k \] 则 \[ (m-1)DP[i]=mDP[i]-DP[i] \] \[ =\sum_{k=1}^{n}k^im^{k+1}-\sum_{k=1}^nk^im^k \] \[ =\sum_{k=2}^{n+1}(k-1)^im^k-\sum…
先膜一发Miskcoo,大佬的博客上多项式相关的非常全 原题戳我 题目大意 求 \[\sum\limits_{i=1}^{n}i^mm^i\] 题解 设一个函数\(f(i)=\sum\limits_{j=1}^{n}j^im^j\) 然后貌似用一个叫扰动法(感觉就是错位相消法)的东西,算一下 \[(m-1)f(i)=\sum\limits_{j=1}^{n+1}(j-1)^im^j-\sum\limits_{i=1}^{n}j^im^j=n^im^{n+1}-\sum\limits_{j=1}^…
Description Input 共一行包括两个正整数N和M. Output 共一行为所求表达式的值对10^9+7取模的值. 特判m=1 m≠1时: 设S[u]=sigma(i^u*m^i) m*S[u]=sigma(i^u*m^(i+1)) =sigma((i-1)^u*m^i)+n^u*m^(n+1) 两式相减得(m-1)*S[u]=n^u*m^(n+1)-sigma((i^u-(i-1)^u)*m^i) S[u]=(n^u*m^(n+1)-sigma((i^u-(i-1)^u)*m^i)…
数论 题解:http://www.cnblogs.com/zhuohan123/p/3726933.html copy一下推导过程: 令$$S_i=\sum_{k=1}^{n}k^im^k$$ 我们有$$ \begin{aligned} (m-1)S_i &= mS_i-S_i \\&=\sum_{k=1}^n k^im^{k+1}-\sum_{k=1}^n k^i m^k \\&=\sum_{k=2}^{n+1}(k-1)^i m^k-\sum_{k=1}^n k^i m^k \…