证明LDU分解的唯一性】的更多相关文章

首先上(下)三角矩阵乘以上(下)三角矩阵结果还是上(下)三角矩阵, 另外我们考虑相乘后的对角元素可发现,对角原始是原来2矩阵对应对角元素的乘积. 另外对角线都是1的上(下)三角矩阵必定可以只是用行运算III化为单位矩阵. 行运算III 对应左乘第3类初等矩阵,因此U1^-1(L2^-1) 可以看成是一系列 第三类(并且是上(下)三角初等矩阵的乘积) 由于这些初等矩阵对角元素都是1,所以相乘后的U1^-1(L2^2-1)其对角元素也是1. 上面根据方程  左是下三角,右是上三角,两边如果要相等,必…
http://blog.csdn.net/pipisorry/article/details/52098864 非负矩阵分解(NMF,Non-negative matrix factorization) NMF的发展及原理 著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想--非负矩阵分解(Non-negative Matrix Factorization,NMF)算法,即NMF是在矩阵中所…
[原] E.J.Hoffman; J.C.Loessi; R.C.Moore The Johns Hopkins University Applied Physics Laboratory *[译]* EXP 2017-12-29 注意 由于原文使用了"m皇后"进行描述,所以本文从现在开始也使用"m皇后"进行描述. 我这里就不调整为大多数人习惯的"n皇后"了,避免某些数学公式参数混淆. *[写在前面]* 这是现在网上流传的一套关于M皇后问题的构造…
转自:http://www.math.org.cn/forum.php?mod=viewthread&tid=14819&extra=&page=1 原作者: wcboy 现在的论坛质量比以前差了,大部分都是来解题问答的,而且层次较低.以前论坛中,Qullien很令人印象深刻,但愿他能在国外闯出一片天空.现在 基础数学版代数&数论子版中那几个讨论代数几何的还不错.不期望目前论坛出现很多高层次高手,高层次高手应该站在好课题上高观点讨论数学,出 现这样的网友,看他们的言论非常过…
[问题2014S13]  解答 (1) 先证必要性:若 \(A=LU\) 是 非异阵 \(A\) 的 \(LU\) 分解,则 \(L\) 是主对角元全部等于 1 的下三角阵,\(U\) 是主对角元全部非零的上三角阵. 由 Cauchy-Binet 公式知 \[|A_k|=|L_k|\cdot|U_k|=|U_k|\neq 0,\,\,k=1,2,\cdots,n,\] 其中 \(|A_k|,|L_k|,|U_k|\) 分别表示 \(A,L,U\) 的第 \(k\) 个顺序主子式. 再证充分性以及…
P 35--38 1.  若 ${\bf B}$ 为横场 ($\Div{\bf B}=0\ra {\bf k}\cdot {\bf B}=0\ra $ 波的振动方向与传播方向平行), 则 $$\bex \exists\ {\bf A},\st {\bf B}=\rot{\bf A}. \eex$$ 特别对任给的 $\psi$, 还可要求 $\Div{\bf A}=\psi$. 2.  若 ${\bf A}$ 为纵场 ($\rot{\bf A}={\bf 0}$), 则 $$\bex \exist…
在RLS自适应滤波器的实现过程中,难免不涉及矩阵的求逆运算.而求逆操作双是非常耗时的,一个很自然的想法就是尽可能的避免直接对矩阵进行求逆运算.那么,在RLS自适应滤波器的实现中,有没有一种方法能避免直接求逆运算呢?答案当然是用的:使用矩阵求逆引理来避免对矩阵进行直接求逆. 这里先对矩阵求逆引理做下介绍,也叫做Woodbury矩阵恒等式(或者称做Sherman–Morrison formula,这里统一称矩阵求逆引理)在线性代数中: \[{\left( {A + UCV} \right)^{ -…
目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理, 折半引理与求和引理 重新定义 多项式的表示 快速傅里叶变换FFT 通过 FFT 在单位复数根处插值 FFT的速度优化与迭代实现 炸精现场与 NTT 原根 NTT 任意模数 NTT 卷积状物体与分治 FFT FWT 与位运算卷积 FWT 与 \(\text{or}\) 卷积 FWT 与 \(\te…
数论 数论是研究整数性质的东西 也就是 lim   π(x)=x/ ln x (x->无穷) 证明: ∵ p|ab ∴ ab有因子p 设 a=p1k1p2k2......prkr      b=q1t1q2t2......qwtw 那么ab= p1k1p2k2......pr‑kr q1t1q2t2......qw‑tw ∴ p1----- qw中一定有一个P,才能使p|ab ∴ p∈{ p1p2......pr‑ q1q2......qw} ∴ p|a 或者 p|b 证明: 存在性: 假设存在…
某帖子笔记1 主要还是从三体吧某精品贴里看来的... 集合论 集合就是一堆东西...满足 1) 集合中的元素互异(即每种只有一个) 2) 集合中的元素无序(不是一个数组,集合中的元素没有显然的排序法则) 3) 集合是确定的(包括满足条件的所有东西,比如'一个集合包含有所有可能存在的集合'是不正确的) 组 组是一类数学对象.组是有序的.多元的. 组的表示方法:$(val1[,val_k]*)$ 笛卡尔积 定义两个集合的笛卡尔积 \[S\times M=\\{(a,b)\mid a\in S,b\i…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4497 解题思路:将满足条件的一组x,z,y都除以G,得到x‘,y',z',满足条件gcd(x',y',x') = 1,同时lcm(x',y',x') = G/L. 特判,当G%L != 0 时,无解. 然后素数分解G/L,假设G/L = p1^t1 * p2^t2 *````* pn^tn. 满足上面条件的x,y,z一定为这样的形式. x' = p1^i1 * p2^i2 *```* pn^in.…
加密:C=Me(mod n) 解密:M=Cd(mod n) 安全性基础: 穷举法攻击: 1.攻击者设计一个M,C=Me(mod n) 2.d的个数至多有n-1个,尝试使用每个d破解,如果M’=Cd‘(mod n)=M,d’是解 3.设p,q分别为100位(十进制),则n-1约200位(十进制)   n=10200 4.假定每秒可以做一亿次搜索(108),每年可以搜索108*60*60*24*365=3*1015 搜索10200个密钥的时间为100200/(3*1015)=3*1015=10184…
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分解,英文全称为Singular Value Decomposition.首先我们要明白,SVD是众多的矩阵分解技术中的一种,矩阵分解方式很多,如三角分解(LU分解.LDU分解.乔列斯基分解等).QR分解及这里所说的奇异值分解:其次,singular是奇特的.突出的.非凡的意思,从分解的过程及意义来看…
引入 可能有不少OIer都知道FFT这个神奇的算法, 通过一系列玄学的变化就可以在 $O(nlog(n))$ 的总时间复杂度内计算出两个向量的卷积, 而代码量却非常小. 博主一年半前曾经因COGS的一道叫做"神秘的常数 $\pi$"的题目而去学习过FFT, 但是基本就是照着板子打打完并不知道自己在写些什么鬼畜的东西OwO 不过...博主这几天突然照着算法导论自己看了一遍发现自己似乎突然意识到了什么OwO然后就打了一道板子题还1A了OwO再加上午考试差点AK以及日更频率即将不保于是就有了…
http://blog.csdn.net/pipisorry/article/details/52459847 概率图模型PGM:概率论基础知识 独立性与条件独立性 独立性 条件独立性 也就是表示给定 c 的条件下 a 与 b 条件独立,等价于公式p(a | b, c) = p(a | c) 随机变量的独立性 等价于 条件独立性的性质 这里是前面的独立性可以导出后面的独立性,而不是等价于后面的独立性. 条件独立的证明 如分解性质可以通过积分w证明:其实画个概率图来更容易分析了. 独立性性质的利用…
分手是祝愿 [题目大意] 有n 个灯,每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这个灯是灭的,操作第 i 个开关时,所有编号为 i 的约数(包括 1 和 i)的灯的状态都会被改变,即从亮变成灭,或者是从灭变成亮.B 可以通过操作小于等于 k 个开关使所有灯都灭掉,那么他将不再随机,直接选择操作次数最小的操作方法(这个策略显然小于等于 k 步)操作这些开关.B 君想知道按照这个策略(也就是先随机操作,最后小于等于 k 步,使用操作次数最小的操作方法)的操作次数的期望. […
题目链接: hdu: http://acm.hdu.edu.cn/showproblem.php?pid=5167 题意: 给你一个x,判断x能不能由斐波那契数列中的数相乘得到(一个数可以重复使用) 题解: 1.筛法 首先,小于10^9的斐波那契数很少,就42个(不包括0,1),对于给定的x能同时成为它的因子的斐波那契数更少,所以可以暴力考虑所有能整除x的斐波那契数组成的集合的所有子集. 但是,对于每个子集做筛法的时候必须从大的数开始筛(质因数分解可以随便筛是因为一个数的质因数分解具有唯一性,但…
我对转贴的信息一直有敌意,原因如下:首先,除了制造更多的信息垃圾,转贴不会带来新的价值,想收藏的话一个链接足矣:其次,将错误信息以讹传讹,混淆视听.不妨选一个典型的例子说明一二. 相信<关于Java堆与栈的思考>这个帖子大家并不陌生,转载量极大.但内容如何呢?我就试着分析一下.说明:以下内容,黑色字体为引用别人的帖子,红色字体是我的分析,蓝色字体是引用相关文献. 1. 栈(stack)与堆(heap)都是Java用来在Ram中存放数据的地方.与C++不同,Java自动管理栈和堆,程序员不能直接…
之前有解释预处理部分的函数,不过觉得还不够详细,同时文字解释还不够直观,所以现在想一步步运行下,打印输出 首先读取原始数据,包括相应的注释(即结节标签)[注意]注释文件中的标签是按x,y,z的顺序给的,但是origin以及spacing都是按照z,y,x的顺序,所以要逆序处理一下([:,::-1]) raw_data,origin,spacing,isflip = load_itk_image("/home/dataset/LUNA16/subset3/1.3.6.1.4.1.14519.5.2…
title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 9999-12-31 23:59:59 本站包含作者原创的关于人工智能的理论,算法等博客,目前包括:强化学习,深度学习,机器学习,线性代数,概率论,数理统计,Python,爬虫等在目前人工智能领域需要用到的基础知识,欢迎大家订阅关注. 本站目录 首先插入一下我的整体研究思路,也是人工智能的技能树,我们要顺…
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Linear Algebra,Big Picture 开篇废话 废话不多说,网易公开课有MIT 18.06的课程翻译,MIT OCW提供相关练习,如有需要都可以进行下载. Gilbert Strang教授的讲授能够让大多数人入门,掌握这门课的大部分内容. 本课程教材使用的也是professor Stran…
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 废话开始,今天介绍OTSU算法,本算法比前面给出的算法更能够给出数学上的最佳阈值,不需要任何输入附加参数.与同样不需要输入附加参数的迭代均值和均值阈值来比较…
一个信号往往包含多个维度,各个维度之间可能包含较强的相关性.下图表示的是一组二维信号x=(x1,x2),可以看到数据点基本上分布在x2=x1这条直线上,二者存在很强的相关性(也就是确定x1之后,就能确定x2的大致范围). 主成分分析(Principal Component Analysis, PCA)的目的在于寻找到一组基,将信号投影到这组基上面,从而能够去除信号各个维度之间的相关性.如下图,u1和u2是通过PCA找到的两个基向量,将信号投影到该基向量上,信号各维度之间的相关性就基本被去除了.…
1028 - Trailing Zeroes (I)   We know what a base of a number is and what the properties are. For example, we use decimal number system, where the base is 10 and we use the symbols - {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. But in different bases we use differ…
GCD and LCM Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Submission(s): 2977    Accepted Submission(s): 1302 Problem Description Given two positive integers G and L, could you tell me how many solutions of…
P1829 [国家集训队]Crash的数字表格 / JZPTAB 题意:求 \({\rm S}(n,m)=\sum\limits_{i=1}^n\sum\limits_{j=1}^m{\rm lcm}(i,j)\) ,对 \(20101009\) 取模. \(x/y\) 等价于 \(\left\lfloor \dfrac xy \right\rfloor\) ,并且设 \(n\le m\) \[\begin{aligned} \sum_{i=1}^n\sum_{j=1}^m{\rm lcm}(i…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
知识点简单总结--Lyndon分解 Lyndon串 定义:一个字符串的最小后缀就是整个串本身. 等效理解:这个串为其所有循环表示中最小的. Lyndon分解 定义:将字符串分割为 $ s_{1} s_{2} ... s_{k} $ 任意段使得每一段都是Lyndon串且 $ \forall i < j , s_{i} \ge s_{j} $ . 引理一:若 $ u < v $ 且 $ u , v $ 均为Lyndon串,则 $ uv $ 为Lyndon串. 关于证明,它咕了. 引理二:Lyndo…
Mittag-Leffler分解定理的证明有多种,比如可以利用一维$\overline{\partial}$的解来构造相应的函数,还可以利用极点主部的Taylor多项式来进行修正使得$\sum(g_{n}-P_{n})$在$\mathbb C$上一致收敛来构造函数. 这里要说一下,因为上述级数是一个亚纯函数的级数,是有极点的.所以这里在$K$的收敛,均是指级数$\sum(g_{n}-P_{n})$仅有有限项在$K$中有极点,同时去掉这些项以后所得新的级数收敛.但是无论是哪一种证明,都无法给出函数…