题目传送门 /* 题意:无向图和有向图的混合图判环: 官方题解:首先对于所有的无向边,我们使用并查集将两边的点并起来,若一条边未合并之前, 两端的点已经处于同一个集合了,那么说明必定存在可行的环(因为这两个点处于同一个并查集集合中,那么它们之间至少存在一条路径) 如果上一步没有判断出环,那么仅靠无向边是找不到环的 考虑到,处于同一个并查集集合中的点之间必定存在一条路径互达,因此将一个集合的点合并之后, 原问题等价于在新生成的有向图中是否有环 我们知道,有向无环图必定存在拓扑序,因此只需使用拓扑排…