OHEM】的更多相关文章

样本不平衡问题 如在二分类中正负样本比例存在较大差距,导致模型的预测偏向某一类别.如果正样本占据1%,而负样本占据99%,那么模型只需要对所有样本输出预测为负样本,那么模型轻松可以达到99%的正确率.一般此时需使用其他度量标准来判断模型性能.比如召回率ReCall(查全率:样本中所有标记为正样本的有多少被模型预测为正样本). 从数据层解决办法:  1.欠采样(undersampling):将模型中类别较多的样例除去一些,使类别样本数量平衡.但此法由于除去一些样本,导致丢失许多信息.一种改进办法是…
Focal Loss for Dense Object Detection-RetinaNet YOLO和SSD可以算one-stage算法里的佼佼者,加上R-CNN系列算法,这几种算法可以说是目标检测领域非常经典的算法了.这几种算法在提出之后经过数次改进,都得到了很高的精确度,但是one-stage的算法总是稍逊two-stage算法一筹,于是就有了Focal Loss来找场子. 在Focal Loss这篇论文中中,作者认为one-stage精确度不如two-stage是因为下面的原因: ① …
公式推导:https://github.com/zimenglan-sysu-512/paper-note/blob/master/focal_loss.pdf 使用的代码:https://github.com/zimenglan-sysu-512/Focal-Loss 在onestage的网络中,正负样本达到1:1000,这就会出现两个问题:1.样本不平衡   2.负样本主导loss.虽然负样本的loss小(因为大量的负样本是easy example,大量负样本是准确率很高的第0类),但个数众…
https://zhuanlan.zhihu.com/p/21412911 rcnn需要固定图片的大小,fast rcnn不需要 rcnn,sppnet,fast rcnn,ohem,faster rcnn,rfcn都属于基于region proposal(候选区域)的目标检测方法,即预先找出图中目标可能出现的位置. fast rcnn:在特征提取层的最后一层卷积后加入roi pooling layer,损失函数使用多任务损失函数(multi-task loss),将边框回归直接加入到CNN网络…
最早由RGB在论文<Training Region-based Object Detectors with Online Hard Example Mining>中提出,用于fast-rcnn训练中,具有一定训练效果: 论文地址:https://arxiv.org/pdf/1604.03540.pdf 实验地址:https://github.com/firrice/OHEM 主要思想:一个batch的输入经过网络的前向传播后,有一些困难样本loss较大,我们可以对loss进行降序排序,取前K个…
参考:https://blog.csdn.net/app_12062011/article/details/77945600 参考:http://www.cnblogs.com/sddai/p/10277383.html 参考:https://blog.csdn.net/u012426298/article/details/81773319 Object Hard example mining: 这里分2种Hard example mining方法,分别对应于优化SVM的算法和非SVM的算法:…
目录 引言 Fast R-CNN设计思路 一.动机 二.现有方案hard negative mining 及其窘境 hard negative mining实现 窘境 设计思路 OHEM步骤: 反向传播 实验结果 引言 Fast R-CNN设计思路 Fast R-CNN将整张图片和选择性搜索算法提取出来的候选区域作为输入,对整张图片利用卷积+池化的组合提取特征,产生一个feature map(特征层),结合选择性搜索算法提取出来的候选区域位置,从feature map中选择对应位置的特征(红色框…
技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道 原创 2016-09-21 钟巧勇 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容平台,邀请学术界.工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术.产品和活动信息!           近年来,随着深度学习的崛起,计算机视觉得到飞速发展.目标检测作为计算机视觉的基础算法,也搭上了深度学习的快车.基于Proposal的检测框架,从R-CNN到Faster R-CNN,算法性能越来越…
R-FCN论文翻译 R-FCN: Object Detection viaRegion-based Fully Convolutional Networks 2018.2.6   论文地址:R-FCN: Object Detection via Region-based Fully Convolutional Networks  代码地址:https://github.com/daijifeng001/r-fcn(matlab版) https://github.com/YuwenXiong/py…
论文原址:https://arxiv.org/pdf/1811.05181.pdf github:https://github.com/libuyu/GHM_Detection 摘要 尽管单阶段的检测器速度较快,但在训练时存在以下几点不足,正负样本之间的巨大差距,同样,easy,hard样本的巨大差距.本文从梯度角度出发,指出了上面两个不足带来的影响.然后,作者进一步提出了梯度协调机制(GHM)用于避开上面的不足.GHM的思想可以嵌入到用于分类的交叉熵损失或者用于回归的Smooth-L1损失中,…