Algorithms: 二叉平衡树(AVL)】的更多相关文章

二叉平衡树(AVL):   这个数据结构我在三月份学数据结构结构的时候遇到过.但当时没调通.也就没写下来.前几天要用的时候给调好了!详细AVL是什么,我就不介绍了,维基百科都有.  后面两月又要忙了.和同学组队去比赛,预计博客这边也不常写了.等这段时间过了再继续更新!  这是我第一次画电路图(原理图)晒晒,事实上我对电子非常感兴趣的.看着网上人家做的电子作品.就想自己也做做.兴奋的想试试.呵呵,以后我做电子小作品了也把他放到博客,开源和大家一起分享.DIY的乐趣.       第一次正儿八经会电…
二叉平衡树 全图基础解释参考链接:http://btechsmartclass.com/data_structures/avl-trees.html 二叉平衡树:https://www.cnblogs.com/zhuwbox/p/3636783.html 前提:会写 求二叉树的深度 背景知识: 为什么需要二叉平衡树 答:因为二叉搜索树在理想状态下(也就是平衡树),查找的时间复杂度为log2n ,但是如果很不幸, ​ 插入的数据都是有序数据的话,那么会退化成O(n)的线性时间复杂度.因为几乎退化成…
1.为什么要有平衡二叉树? 上一节我们讲了一般的二叉查找树, 其期望深度为O(log2n), 其各操作的时间复杂度O(log2n)同时也是由此决定的.但是在某些情况下(如在插入的序列是有序的时候), 二叉查找树就会退化成近似链或链.如下图(b). 此时, 其操作的时间复杂度退化成线性的,即O(n).我们可以通过随机化建立二叉搜索树来尽量的避免这种情况,但是在进行了多次的操作之后,由于在删除时,我们总是选择将待删除节点的后继代替它本身,这样就会造成总是右边的节点数目减少,以至于树向左偏沉.这同时也…
基本概念 AVL树:树中任何节点的两个子树的高度最大差别为1. AVL树的查找.插入和删除在平均和最坏情况下都是O(logn). AVL实现 AVL树的节点包括的几个组成对象: (01) key -- 是关键字,是用来对AVL树的节点进行排序的. (02) left -- 是左孩子. (03) right -- 是右孩子. (04) height -- 是高度.即空的二叉树的高度是0,非空树的高度等于它的最大层次(根的层次为1,根的子节点为第2层,依次类推). AVL旋转算法 AVL失衡四种形态…
package Demo; public class AVLtree { private Node root; //首先定义根节点 private static class Node{ //定义Node指针参数 private int key; //节点 private int balance; //平衡值 private int height; //树的高度 private Node left; //左节点 private Node right; //右节点 private Node pare…
AVL树概念 前面学习二叉查找树和二叉树的各种遍历,但是其查找效率不稳定(斜树),而二叉平衡树的用途更多.查找相比稳定很多.(欢迎关注数据结构专栏) AVL树是带有平衡条件的二叉查找树.这个平衡条件必须要容易保持.而且要保证它的深度是O(logN). AVL的条件是左右树的高度差(平衡因子)不大于1:并且它的每个子树也都是平衡二叉树. 对于平衡二叉树的最小个数,n0=0;n1=1;nk=n(k-1)+n(k-2)+1;(求法可以类比斐波那契!) 难点:AVL是一颗二叉排序树,用什么样的规则或者规…
先来了解一些基本概念: 1)什么是二叉平衡树? 之前我们了解过二叉查找树,我们说通常来讲, 对于一棵有n个节点的二叉查找树,查询一个节点的时间复杂度为log以2为底的N的对数. 通常来讲是这样的, 但是...有例外 比如,我们向一棵树中输入预先排好序的数据, 如1,2,3,4,5,...10000, 可以想象到,将形成一棵斜树那么查找10000就要经过9999次比较才能得到,这显然不是我们期望看到的 所以,我们希望引入一个约束条件----任何节点的深度不得过深. 这就是二叉平衡树 二叉平衡树是二…
目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜索树所有的节点都是右节点,那么这个二叉搜索树将会退化成为链表.从而导致搜索的时间复杂度变为O(n),其中n是二叉搜索树的节点个数. 而平衡二叉搜索树正是为了解决这个问题而产生的,它通过限制树的高度,从而将时间复杂度降低为O(logn). AVL的特性 在讨论AVL的特性之前,我们先介绍一个概念叫做平…
输入一颗二叉树,判断这棵树是否为二叉平衡树.首先来看一下二叉平衡树的概念:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树.因此判断一颗二叉平衡树的关键在于求出左右子树的高度差,而二叉树的高度又是怎么定义的呢?二叉树的高度指的是从根节点到叶子节点所有路径上包含节点个数的最大值.所以我们可以得出,父亲节点的高度与左右子树高度的关系为:父亲节点的高度=max(左子树高度,右子树高度)+1,同时我们知道,叶子节点的高度值为1(或则0,这里定义1或者0对判断结…
树-二叉搜索树-AVL树 树 树的基本概念 节点的度:节点的儿子数 树的度:Max{节点的度} 节点的高度:节点到各叶节点的最大路径长度 树的高度:根节点的高度 节点的深度(层数):根节点到该节点的路径长度 树的遍历 ·前序遍历:根左右(x,Tl,Tr) ·中序遍历:左根右(Tl,x,Tr) ·后序遍历:左右根(Tl,Tr,x) 树的表示法 1.父节点数组表示法 (寻找父节点O(1),寻找儿子节点O(n)) 2.儿子链表表示法 (为克服找父节点不方便,可牺牲空间换时间:) 3.左儿子右兄弟表示法…