原文链接https://www.cnblogs.com/zhouzhendong/p/NOI2018Day2T1.html 题目传送门 - 洛谷P4774 题意 题解 首先我们仔细看一看样例可以发现如果一回合打不过巨龙就输了. 所以每一回合都要赢.所以每一次选择的宝剑都是可以提前预知的. 我们用个 set 来支持快速插入和 upper_bound ,可以在 $O((n+m)\log m)$ 的时间复杂度内处理得到每一把宝剑要处理的巨龙. 我们考虑化简一下原题的意思: 令 $v_i$ 为攻击第 $…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ2891 题意概括 给出k个同余方程组:x mod ai = ri.求x的最小正值.如果不存在这样的x,那么输出-1.不满足所有的ai互质. 题解 UPD(2018-08-07): 本题做法为扩展中国剩余定理. 我写了一篇证明:链接:https://www.cnblogs.com/zhouzhendong/p/exCRT.html 代码就不要看了,很久之前写的,太丑了. 代码 #include <cs…
前言 我们熟知的中国剩余定理,在使用条件上其实是很苛刻的,要求模线性方程组\(x\equiv c(\mod m)\)的模数两两互质. 于是就有了扩展中国剩余定理,其实现方法大概是通过扩展欧几里德把两个同余方程合并,具体会在下面提到. 但是,使用仍有限制,那就是\(x\)的系数必须为\(1\). 没关系,把它再扩展一下 题目及实现 洛谷题目传送门 题意分析 显然,如果我们能干掉所有龙,那么每一次使用的剑的攻击力是已知的,设为\(k\).那么对于每一条龙,攻击次数\(x\)必须满足\(kx\equi…
洛谷题目传送门 90分WA第二个点的看过来! 简要介绍一下中国剩余定理 中国剩余定理,就是用来求解这样的问题: 假定以下出现数都是自然数,对于一个线性同余方程组(其中\(\forall i,j\in[1,k],i\neq j,b_i\)与\(b_j\)互质) \(\begin{cases}n\equiv a_1(\mod b_1)\\n\equiv a_2(\mod b_2)\\......\\n\equiv a_k(\mod b_k)\end{cases}\) 设\(lcm=\prod_{i=…
题目大意:略 真是一波三折的一道国赛题,先学了中国剩余定理,勉强看懂了模板然后写的这道题 把取出的宝剑攻击力设为T,可得Ti*x=ai(mod pi),这显然是ax=c(mod b)的形式 这部分用exgcd求解x的最小正整数解 先把a,b,c除以gcd(a,b),如果c不能整除gcd(a,b)那么无解.此时a,b互质,用exgcd求得a的逆元,逆元乘回来gcd(a,b)就是x的最小正整数解,注意可能爆long long要用龟速乘 那么此时求得的x是仅仅对于这一个方程的,我们要把它带到excrt…
1.gcd: int gcd(int a,int b){ ?a:gcd(b,a%b); } 2.中国剩余定理: 题目:学生A依次给n个整数a[],学生B相应给n个正整数m[]且两两互素,老师提出问题:有一正整数ans,对于每一对数,都有:(ans-a[i])mod m[i]=0.求此数最小为多少. 输入样例: - - - - 实现代码: #include <fstream> #include <iostream> #include <algorithm> #includ…
扩展中国剩余定理,EXCRT. 题目传送门 重温一下中国剩余定理. 中国剩余定理常被用来解线性同余方程组: x≡a[1] (mod m[1]) x≡a[2] (mod m[2]) ...... x≡a[n] (mod m[n]) 但是中国剩余定理只能解决m[1].m[2]......m[n]两两互质的情况. 对于m[1].m[2]......m[n]不两两互质的情况,我们需要用其它的方法解决. 假设我们已经处理到了第i个方程,设ans为前i-1个方程的解,ms为m[1]*m[2]*...*m[i…
#include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(scanf("%d%d%d%d",&p,&e,&i,&d)) { && e == - && i == - && d== -) break; ,m2 = ,m3 = ; const int M1 = m2*m3, M2…
题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60%的算法,在借鉴了巨神zhx的代码并查阅了官方题解后才终于懂了点了. 两两互质的情形 首先,考虑简化的情形:若模板i的长度为li,我们加上限制,即所有模板的长度两两互质. 假设当前位置x对应第i个模板的位置为ai,当且仅当,而li是两两互质的,由中国剩余定理,x在范围内有唯一解.这样,这个问题就被秒掉了.…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…