「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路,设 \[ ans=\frac{X-Y}{k}\\ ans\times k =X-Y\\ ans\times k=-\sum w_i\\ \sum ans-w_i=0 \] 从第二部到第三步是把X和Y中的共同边都减掉了 \(w\)是根据扩容或者缩容建的边权为\(b+d,a-d\)的边权集合 注意一点…
「SCOI2014」方伯伯的 OJ 和列队有点像,平衡树点分裂维护即可 但是需要额外用个set之类的对编号查找点的位置 插入完了后记得splay,删除时注意特判好多东西 Code: #include <cstdio> #include <cctype> #include <set> const int N=2e5+10; template <class T> void inline read(T &x) { x=0;char c=getchar();…
「SCOI2014」方伯伯的商场之旅 我一开始的想法会被两个相同的集合位置去重给搞死,不过应该还是可以写的,讨论起来老麻烦. 可以先钦定在\(1\)号点集合,然后往后调整一部分. 具体一点,通过前缀和减去后缀和的正负性移动 写的时候把\(sum\)压进去搞会非常简单 Code #include <cstdio> #include <cstring> #define ll long long ll dp[25][3000];int bit[25],k; ll dfs(int dep,…
#2211. 「SCOI2014」方伯伯的玉米田 发现是取一个最长不下降子序列 我们一定可以把一个区间加的右端点放在取出的子序列的最右边,然后就可以dp了 \(dp_{i,j}\)代表前\(i\)个玉米田末尾为\(i\)拔高过\(j\)次的最大答案 \[ dp_{i,j}=\max dp_{k,l}+1(k<i,h_i+j\ge h_k+l) \] 发现可以维护的样子 维护一个\(f_{i,j}\)表示小于等于\(i\)高度(拔过后)拔的次数小于等于\(j\)次的最大值 直接二维树状数组搞就行了…
「SCOI2014」方伯伯的商场之旅 题目描述 方伯伯有一天去参加一个商场举办的游戏.商场派了一些工作人员排成一行.每个人面前有几堆石子.说来也巧,位置在 \(i\) 的人面前的第 \(j\) 堆的石子的数量,刚好是 \(i\) 写成 \(K\) 进制后的第 \(j\) 位. 现在方伯伯要玩一个游戏,商场会给方伯伯两个整数 \(L,R\).方伯伯要把位置在 \([L, R]\) 中的每个人的石子都合并成一堆石子.每次操作,他可以选择一个人面前的两堆石子,将其中的一堆中的某些石子移动到另一堆,代价…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status][Discuss] Description ................. Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答…
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费di,限制网络流量不能改变.调整后必须满 流,设调整了K 次,使得费用减少量为D,最大化D/K 就是给你一个费用流,但不是最小,增广的费用为b+d,退流的费用为a-d 就是正反向增广路 根据消圈定理,流f为mcmf当且仅当无负费用增广圈 01分数规划+spfa求负环即可 #include <iost…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 594  Solved: 360[Submit][Status][Discuss] Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sampl…
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 404  Solved: 249 [Submit][Status][Discuss] Description Input 第一行包含二个整数N,M 接下来M行代表M条边,表示这个交通网络 每行六个整数,表示Ui,Vi,Ai,Bi,Ci,Di 接下来一行包含一条边,表示连接起点的边 Output 一个浮点数,保留二位小数.表示答案,数据保证答案大于0 Sam…
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行相反的修改 现在要求最大化\(\frac{X-Y}{K}\) 二分答案\(mid\) 式子变为\(X-Y-K·mid\geq 0\) 换而言之,相当于给每次修改操作额外付出一个代价\(mid\) 要使得费用+修改代价最小 对于扩容我们很好处理 对于每条边再额外连一条边 容量为\(inf\)(可以无限…