最短路径之Floyd-warshall算法】的更多相关文章

问题简介: 给定T条路,S个起点,D个终点,求最短的起点到终点的距离. 思路简介: 弗洛伊德算法即先以a作为中转点,再以a.b作为中转点,直到所有的点都做过中转点,求得所有点到其他点的最短路径,Floyd算法适用于多源最短路径,是一种动态规划算法,稠密图效果最佳,边权可正可负.优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单.缺点:时间复杂度比较高,不适合计算大量数据.Floyd算法时间复杂度为n^3,Dijikstra算法为n^2. 优化代码: #include <iostre…
我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = cost[i][j]) 状态转移方程:d[k][i][j] = min ( d[k-1][i][k], d[k-1][k][j] ) 解释:我们分i到j的最短路正好经过顶点k一次和完全不经过k两种情况来讨论. 这个DP也可以使用滚动数组来进行递推:d[i][j] = min ( d[i][j], d[…
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshall算法: 思路如下:把所有从顶点i到j可能经过的顶点一一枚举,不断更新从i到j的最小权值:d[i][j] = min{d[i][j],d[i][k]+d[k][j]},是一种动规的思想 局限性:不能处理有负权回路(负圈)的情况,而且一般是使用邻接矩阵的方式来实现. 优劣性:思路简单,核心代码简洁易懂…
1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也就是求源点到整个图的最短,次短距,第三短距离等(这些距离都是源点到某个点的最短距离)...求出的每个距离都对应一个点,也就是要到的到这个点,求的也就是原点到所有点的最短距离,并存在二维数组中,给出目的点就能直接通过查表获得最短距离. 第1步:以源点START(假设s1)为始点,求最短距离,如何求?…
数据结构与算法--最短路径之Floyd算法 我们知道Dijkstra算法只能解决单源最短路径问题,且要求边上的权重都是非负的.有没有办法解决任意起点到任意顶点的最短路径问题呢?如果用Dijkstra算法,可以这样做: Dijkstra[] all = new Dijkstra[graph.vertexNum()]; for (int i = 0; i < all.length; i++) { all[i] = new Dijkstra(graph, i); } for (int s = 0; s…
算法介绍 和Dijkstra算法一样,Floyd算法也是为了解决寻找给定的加权图中顶点间最短路径的算法.不同的是,Floyd可以用来解决"多源最短路径"的问题. 算法思路 算法需要引入两个二维数组ShortPathTable和Patharc.ShortPathTable表示顶点到顶点的最短路径权值和的矩阵,Patharc表示对应顶点的最小路径的前驱矩阵.在为分析任何顶点之前,ShortPathTable初始化为图的邻接矩阵. 假设图G有N个顶点,那么需要对矩阵ShortPathTabl…
Floyd算法 1.定义概览 Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 2.算法描述 1)算法思想原理: Floyd算法是一个经典的动态规划算法.用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径.从动态规划的角度看问题,我们需要为这个目标重新做…
题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY".再给出 $m$ 个某人说的话,也是表述为 "XXX are worse than YYY",对于每句话都要判断是否正确: 如果正确,输出 "Fact":如果错误,输出 "Alternative Fact":如果无法判断,输出 "Pant…
转载:https://blog.csdn.net/qq_35644234/article/details/60875818 Floyd算法的介绍 算法的特点 弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. 算法的思路 通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离.矩阵P中的元素b…
Dijkstra算法: Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等.注意该算法要求图中不存在负权边. 问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径.(单源最短路径) 算法的基本思想是:每…
1.引言 图的连通性问题是图论研究的重要问题之一,在实际中有着广泛的应用.例如在通信网络的联通问题中,运输路线的规划问题等等都涉及图的连通性.因此传递闭包的计算需要一个高效率的算法,一个著名的算法就是warshall在1962年提出的WarShall算法. 2.算法描述 使用n阶布尔矩阵\(R^{(k)}(0\leq k\leq n)\)来表示有向图中任意一对节点 是否含有路径的信息.因此,可将原问题划分为如下决策阶段: \[R^{(0)},R^{(1)},\cdots,R^{(k)},\cdo…
/** * * @author Zen Johnny * @date 2018年3月31日 下午8:13:09 * */ package freeTest; /* [动态规划系列:Warshall算法] 问题定义: 一个顶点有向图的传递闭包可以定义为一个n阶布尔矩阵T={t(i,j)}: 如果从第i个顶点之间存在一条有效的有向路径(即 长度大于0的有向路径), 矩阵第i行(1<=i<=n)第j列(1<=j<=n)的元素为1,否则为,t(i,j)为0 问题:计算有向图内各点传递闭包(…
  问题 最短路径问题的Dijkstra算法 是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出.迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法终于得到一个最短路径树>    .该算法经常使用于路由算法或者作为其它图算法的一个子模块.   这个算法的python实现途径非常多,网上可以发现不少.这里推荐一个我在网上看到的.本来打算自己写,看了这个,决定自己不写了.由于他的已经太好了. 下面代码来自网络.可是我不能写来源.由于写了来源网址,这里就不让我发出这篇文章.这不是逼着我剽…
题意:湖中有很多石头,两只青蛙分别位于两块石头上.其中一只青蛙要经过一系列的跳跃,先跳到其他石头上,最后跳到另一只青蛙那里.目的是求出所有路径中最大变长的最小值(就是在到达目的地的路径中,找出青蛙需要跳跃的最大边长的最小的值). 思路:warshall算法 hint:似懂非懂 课本代码: #include<iostream> #include<cmath> #include<stdio.h> #include<cstring> bool con[210][2…
数据结构图之三(最短路径--迪杰斯特拉算法)   [1]最短路径 最短路径?别乱想哈,其实就是字面意思,一个带边值的图中从某一个顶点到另外一个顶点的最短路径. 官方定义:对于内网图而言,最短路径是指两顶点之间经过的边上权值之和最小的路径. 并且我们称路径上的第一个顶点为源点,最后一个顶点为终点. 由于非内网图没有边上的权值,所谓的最短路径其实是指两顶点之间经过的边数最少的路径. 别废话了!整点实际的哈,你能很快计算出下图中由源点V0到终点V8的最短路径吗? [2]迪杰斯特拉算法 迪杰斯特拉算法是…
用邻接矩阵 /* 单源最短路径问题2 (Dijkstra算法) 样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ import java.util.Arrays; import java.util.Scanner; public class Main { //图的顶点数,总边数 static int V, E; //存储所有的边,大小为顶点数 static int[][] Edges; static…
/*单源最短路径问题1 (Bellman-Ford算法)样例: 5 7 0 1 3 0 3 7 1 2 4 1 3 2 2 3 5 2 4 6 3 4 4 输出: [0, 3, 7, 5, 9] */ import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Test { //图的顶点数,总边数 static int V, E; //存储所有的边,大小为顶点数 stati…
传递闭包 在数学中,在集合 X 上的二元关系 R 的传递闭包是包含 R 的 X 上的最小的传递关系. 例如,如果 X 是(生或死)人的集合而 R 是关系“为父子”,则 R 的传递闭包是关系“x 是 y 的祖先”.再比如,如果 X 是空港的集合而关系 xRy 为“从空港 x 到空港 y 有直航”,则 R 的传递闭包是“可能经一次或多次航行从 x 飞到 y”. Warshall算法 Warshall在1962年提出了一个求关系的传递闭包的有效算法.其具体过程如下,设在n个元素的有限集上关系R的关系矩…
Floyd算法又称弗洛伊德算法,也叫做Floyd's algorithm,Roy–Warshall algorithm,Roy–Floyd algorithm, WFI algorithm. Floyd算法是一种在有权图中(有确定的非负的权值,不能存在环路)查找最短路径的算法.该算法的一次简单执行可以找出任意结点之间的最短路径(尽管它没有返回路径的具体信息). 思想: Floyd算法通过比较图中任意两点间所有可能存在的路径长度得到最短路径长度. 我们定义一个函数shortestPath(i,j,…
floyd算法和之前讲的bellman算法.dijkstra算法最大的不同在于它所处理的终于不再是单源问题了,floyd可以解决任何点到点之间的最短路径问题,个人觉得floyd是最简单最好用的一种算法,只不过它的时间复杂度高,为o(v^3),用的时候需要谨慎. floyd的精髓部分在于实现其思想的三个for循环,而它的主要思想:如果存在一个点k,使得dis[s][t]<dis[s][k]+dis[k][t],那么我们就更新dis[s][t]. #include<iostream>//fl…
1.Dijkstra算法 求一个顶点到其它所有顶点的最短路径,是一种按路径长度递增的次序产生最短路径的算法. 算法思想: 按路径长度递增次序产生算法: 把顶点集合V分成两组: (1)S:已求出的顶点的集合(初始时只含有源点V0) (2)V-S=T:尚未确定的顶点集合 将T中顶点按递增的次序加入到S中,保证: (1)从源点V0到S中其他各顶点的长度都不大于从V0到T中任何顶点的最短路径长度 (2)每个顶点对应一个距离值 S中顶点:从V0到此顶点的长度 T中顶点:从V0到此顶点的只包括S中顶点作中间…
https://cloud.tencent.com/developer/article/1012420 为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析…
Floyd算法 思想:将n个顶点的图G“分成”很多子图 每对顶点vi和vj对应子图Gij(i=0,1,…,n-1和j=0,1,…,n-1) 每对顶点vi和vj都保留一条顶点限于子图Gij中的最短路径Pij(称为待定路径),其长度为Dij,不断地往子图Gij中增加“中间过渡点”(子图不断扩大),不断地将Pij优化(始终保持在Gij中是最短的),当图中所有n个顶点都作为中间过渡点加到子图Gij中时,子图Gij就变成了原图G,待定路径Pij也就变成最终所求的(在原图中的)vi到vj的最短路径.(注:i…
最短路径—Dijkstra算法和Floyd算法 http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法(单源最短路径) http://www.cnblogs.com/dolphin0520/archive/2011/08/26/2155202.html…
Bellman-Ford算法 Bellman-Ford是一种容易理解的单源最短路径算法, Bellman-Ford算法需要两个数组进行辅助: dis[i]: 存储顶点i到源点已知最短路径 path[i]: 存储顶点i到源点已知最短路径上, i的前一个顶点. 若图有n个顶点, 则图中最长简单路径长度不超过n-1, 因此Ford算法进行n-1次迭代确保获得最短路径. Ford算法的每次迭代遍历所有边, 并对边进行松弛(relax)操作. 对边e进行松弛是指: 若从源点通过e.start到达e.sto…
为了能讲明白弗洛伊德(Floyd)算法的主要思想,我们先来看最简单的案例.图7-7-12的左图是一个简单的3个顶点的连通网图. 我们先定义两个二维数组D[3][3]和P[3][3], D代表顶点与顶点的最短路径权值和的矩阵.P代表对应顶点的最短路径的前驱矩阵.在未分析任何顶点之前,我们将D命名为D(-1),其实它就是初始图的邻接矩阵.将P命名为P(-1), 初始化为图中的矩阵. 首先我们来分析,所有的顶点经过v0后到达另一顶点的最短路径.因为只有3个顶点,因此需要查看v1->v0->v2,得到…
概念 最短路径也是图的一个应用,即寻找图中某两个顶点的最短路径长度. 实际应用:例如确定某两个城市间的坐火车最短行车路线长度等. Floyd algorithm 中文名就是弗洛伊德算法. 算法思路:用邻接矩阵来存储图的结构,edge[i][j]表示从结点i到结点j的最短路径长度,那么该如何计算edge[i][j]呢?首先我们可以假设当前的edge[i][j]不是最短的路径长度,必须经过k结点,比较edge[i][i]与edge[i][k]+edge[k][j]的大小(其中k的取值为所有点的编号)…
Floyd思想可用下式描述: A-1[i][j]=gm[i][j] A(k+1)[i][j]=min{Ak[i][j],Ak[i][k+1]+Ak[K+1][j]}    -1<=k<=n-2 该式是一个迭代公式,Ak表示已考虑顶点0,1,.......,k等k+1个顶点之后各顶点之间的最短路径,即Ak[i][j]表示由Vi到Vj已考虑顶点0,1,.......,k等k+1个顶点的最短路径;在此基础上再考虑顶点k+1并求出各顶点在考虑了顶点k+1之后的最短路径,即得到Ak+1.每迭代一次,在从…
图结构练习——最短路径 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  给定一个带权无向图,求节点1到节点n的最短路径.   输入  输入包含多组数据,格式如下. 第一行包括两个整数n m,代表节点个数和边的个数.(n<=100) 剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c.   输出  每组输出占一行,仅输出从1到n的最短路径权值.(保证最短路径存在)   示例输入 3 2 1 2 1 1…
算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所有边进行松弛,一共对所有边松弛n-1次,判断是否有负权 Floyd 无负权 依次对所有点(的所有边进行松弛),直到完成对所有点的操作…