首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
hdu5015构造转移矩阵
】的更多相关文章
hdu5015构造转移矩阵
/* 构造转移矩阵: 先推公式: 首先是第0行:A[0][j+1]=A[0][j]*10+3 1-n行: A[i][j+1]=A[i][j]+A[i-1][j+1]=... =A[i][j]+A[i-1][j]+...+A[1][j]+A[0][j+1] 所以第j+1行状态可以由第j行通过乘上一个转移矩阵得到 那么就是转移矩阵的构造 设F[j]为第j列,F[j+1]为第j+1列,B为转移矩阵 有 F[j+1]=B*F[j] 按照递推性质 1 0 0 0 0 ... 0 3 3 1 10 0 0…
从随机过程到马尔科夫链蒙特卡洛方法(MCMC)
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间仔细看.趁目前比较清闲,把 machine learning 里面的 sampling methods 理一理,发现内容还真不少,有些知识本人也是一知半解,所以这篇博客不可…
北京培训记day1
数学什么的....简直是丧心病狂啊好不好 引入:Q1:前n个数中最多能取几个,使得没有一个数是另一个的倍数 答案:(n/2)上取整 p.s.取后n/2个就好了 Q2:在Q1条件下,和最小为多少 答案:从n/2向前枚举,对于每个数,倍增考虑后面选的数有多少个是它的倍数,如果只有一个,就用当前数替换后面的那个 (复杂度:nloglogn) 正文: 一.gcd与exgcd gcd(a,b)=gcd(b%a,a) exgcd:已知Ax≡B (%C) 则Ax+By=C int g=gcd(A,B,C…
MCMC 、抽样算法与软件实现
一.MCMC 简介 1. Monte Carlo 蒙特卡洛 蒙特卡洛方法(Monte Carlo)是一种通过特定分布下的随机数(或伪随机数)进行模拟的方法.典型的例子有蒲丰投针.定积分计算等等,其基础是大数定律. 蒙特卡洛方法有哪些优缺点如下: 优点:计算准确性由采样的均匀程度决定:大大简化问题复杂性 缺点: 由于要进行大量的抽样计算,对计算机速度依赖性强 目前绝大多数随机数发生器均为伪随机数,一定程度上有偏 定积分求解问题中,对于\(\color{blue}{复杂或者高维的分布}\),利用蒙特…
2014 ACM/ICPC Asia Regional Xi'an Online
03 hdu5009 状态转移方程很好想,dp[i] = min(dp[j]+o[j~i]^2,dp[i]) ,o[j~i]表示从j到i颜色的种数. 普通的O(n*n)是会超时的,可以想到o[]最大为sqrt(n),问题是怎么快速找到从i开始往前2种颜色.三种.四种...o[]种的位置. 离散化之后,可以边走边记录某个数最后一个出现的位置,初始为-1,而所要求的位置就等于 if(last[a[i]]==-1) 该数没有出现过,num[i][1] = i,num[i][j+1] = num[i-1…
BZOJ4471 : 随机数生成器Ⅱ
\[\begin{eqnarray*}x_i&=&x_{i-1}+x_{i-2}\\x_i^2&=&x_{i-2}^2+x_{i-1}^2+2x_{i-2}x_{i-1}\\x_{i-1}x_i&=&x_{i-1}^2+x_{i-2}x_{i-1}\end{eqnarray*}\] 故可以构造转移矩阵$A$进行递推. 不妨设$n\geq m$,则可以预处理出$A^0,A^1,...,A^n$以及$A^n,A^{2n},...,A^{nn}$. 那么查询某个数…
[转] - MC、MC、MCMC简述
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…
随机采样方法整理与讲解(MCMC、Gibbs Sampling等)
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
AC自动机基础知识讲解
AC自动机 转载自:小白 还可参考:飘过的小牛 1.KMP算法: a. 传统字符串的匹配和KMP: 对于字符串S = ”abcabcabdabba”,T = ”abcabd”,如果用T去匹配S下划线部分是当前已经匹配好的前缀,当c和d不匹配时: S:abcabcabdabba T:abcabd 传统的算法是将T串向后移动一个单位,然后重新匹配.如果利用KMP算法则直接将T向后移动3位,即: S:abcabcabdabba T: abcabd…
LDA-math-MCMC 和 Gibbs Sampling
http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早…