Deep Visualization:可视化并理解CNN】的更多相关文章

转载地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
原文地址:https://zhuanlan.zhihu.com/p/24833574 一.前言 CNN作为一个著名的深度学习领域的“黑盒”模型,已经在计算机视觉的诸多领域取得了极大的成功,但是,至今没有人能够“打开”这个“黑盒”,从数学原理上予以解释.这对理论研究者,尤其是数学家来说当然是不可接受的,但换一个角度来说,我们终于创造出了无法完全解释的事物,这也未尝不是一种进步了! 当然,虽然无法完全“打开”这个“黑盒”,但是仍然出现了很多探索这个“黑盒”的尝试工作.其中一个工作就是今天我们讨论的重…
参考:https://zhuanlan.zhihu.com/p/24833574 学习论文[1311.2901] Visualizing and Understanding Convolutional Networks 知乎专栏这篇可视化CNN讲的挺不错,我再稍微提炼下. Visualization with a Deconvnet:将feature map中的特征通过反池化.反激活.反卷积映射到像素. 反池化可通过记录最大激活值的位置来实现,反激活直接使用ReLU,反卷积采用该卷积核的转置来进…
From: http://www.infoq.com/cn/news/2016/12/depth-neural-network-fake-photos 当时大部分的DNN在识别图像中对象的过程中主要依据的特征是一些局部特征(如豹子身上的斑点.校车的黑黄色),而忽略了整体特征(如海星的五角星形状.豹子长了四条腿). 知道了DNN所忽略的特征,从而有针对性的进行算法的改进,就有可能大幅提升DNN生成指定图像的能力. 2016年,该研究组先后发布了两篇论文介绍 Deep Generator Netwo…
1. 阅读论文:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解感受野 定义:receptive field, or field of view (感受野) A unit in convolutional networks only depends on a region of the input. This region in the input is the recepti…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的.本文的实验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Ne…
想自己动手写一个CNN很久了,论文和代码之间的差距有一个银河系那么大. 在实现两层的CNN之前,首先实现了UFLDL中与CNN有关的作业.然后参考它的代码搭建了一个一层的CNN.最后实现了一个两层的CNN,码代码花了一天,调试花了5天,我也是醉了.这里记录一下通过代码对CNN加深的理解. 首先,dataset是MNIST.这里层的概念是指convolution+pooling,有些地方会把convolution和pooling分别作为两层看待. 1.CNN的结构 这个两层CNN的结构如下: 图一…
在深度学习的算法学习中,都会提到 channels 这个概念.在一般的深度学习框架的 conv2d 中,如 tensorflow .mxnet ,channels 都是必填的一个参数. channels 该如何理解?先看一看不同框架中的解释文档. 首先,是tensorflow中给出的,对于输入样本中 channels 的含义.一般的RGB图片,channels 数量是 3 (红.绿.蓝):而monochrome图片,channels 数量是 1 . channels :——tensorflow…
当数据一层一层通过更多的卷积层时,你可以得到的特征图像代表的特征就会更加的复杂. 在网络的最后,你也许可以得到一个抽象的物体.如果你想通过可视化方法在卷积神经网络中看到更多的信息.这里有一个工具方便你查看https://github.com/yosinski/deep-visualization-toolbox,它的效果如下图所示:…
一.深度卷积神经网络学习笔记(一): 1. 这篇文章以贾清扬的ppt说明了卷积的实质,更说明了卷积输出图像大小应该为: 假设输入图像尺寸为W,卷积核尺寸为F,步幅(stride)为S(卷积核移动的步幅),Padding使用P(用于填充输入图像的边界,一般填充0),那么经过该卷积层后输出的图像尺寸为(W-F+2P)/S+1. 2.它写出为什么会用padding?卷积核大小该如何确定?stride该如何确定? 二. Caffe的卷积原理: 1.这篇文章把卷积的过程写得非常形象化,用简单的例子用明白了…
1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool()等,用法如下: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,name=None) #来进行(二维数据)卷积操作 tf.nn.max_pool_with_argmax(input, ksize, stride…
https://blog.csdn.net/v_july_v/article/details/79434745 Youtube上迄今为止最好的卷积神经网络快速入门教程 https://www.bilibili.com/video/av48197041/…
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非学者所著,看着也更舒服一点. 另,本文涉及了反向传播的backpropagation算法,知乎上有个回答很不错,备份到文章里了,为支持原作者,这里给出知乎原文连接 可视化理解卷积神经网络 这张PPT是本节课的核心,下面我来说说这张图. 可视化神经网络的思想就是构建一个逆向的卷积神经网络,但是不包括训…
1. 卷积神经网络结构 卷积神经网络是一个多层的神经网络,每层都是一个变换(映射),常用卷积convention变换和pooling池化变换,每种变换都是对输入数据的一种处理,是输入特征的另一种特征表达:每层由多个二维平面组成,每个平面为各层处理后的特征图(feature map). 常见结构: 输入层为训练数据,即原始数据,网络中的每一个特征提取层(C-层)都紧跟着一个二次提取的计算层(S-层),这种特有的两次特征提取结构使网络在识别时对输入样本有较高的畸变容忍能力.具体C层和S层的个数不确定…
对CNN感受野一些理解 感受野(receptive field)被称作是CNN中最重要的概念之一.为什么要研究感受野呐?主要是因为在学习SSD,Faster RCNN框架时,其中prior box和Anchor box的设计,一直搞不明白.当我理解了感受野才有点恍然大悟的感觉.快速看完这篇文章的前提是,要对CNN有个大致了解,feature map等术语要知道. 先看八股式定义,感受野:在卷积神经网络CNN中,决定某一层输出结果中一个元素所对应的输入层的区域大小,被称作感受野receptive…
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程…
From: http://blog.csdn.net/zouxy09/article/details/49080029 一个概念需经过反复的推敲以及时间的沉淀,之后才能真正理解 [OpenCV] Image Processing - Spatial Filtering [CNN] What is Convolutional Neural Network 何谓卷积? 首先,我们有一个二维的滤波器矩阵(卷积核)和一个要处理的二维图像. 然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应…
Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fields of units in deep convolutional networks. The receptive field size is a crucial issue in many vis…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/274 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络) [UFLDL]Exercise: Co…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…
在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结. 在学习CNN前,推荐大家先学习DNN的知识.如果不熟悉DNN而去直接学习CNN,难度会比较的大.这是我写的DNN的教程: 深度神经网络(DNN)模型与前向传播算法 深度神经网络(DNN)反向传播算法(BP) 深度…
在卷积神经网络(CNN)模型结构中,我们对CNN的模型结构做了总结,这里我们就在CNN的模型基础上,看看CNN的前向传播算法是什么样子的.重点会和传统的DNN比较讨论. 1. 回顾CNN的结构 在上一篇里,我们已经讲到了CNN的结构,包括输出层,若干的卷积层+ReLU激活函数,若干的池化层,DNN全连接层,以及最后的用Softmax激活函数的输出层.这里我们用一个彩色的汽车样本的图像识别再从感官上回顾下CNN的结构.图中的CONV即为卷积层,POOL即为池化层,而FC即为DNN全连接层,包括了我…
(Demo) 这是最近两个月来的一个小总结,实现的demo已经上传github,里面包含了CNN.LSTM.BiLSTM.GRU以及CNN与LSTM.BiLSTM的结合还有多层多通道CNN.LSTM.BiLSTM等多个神经网络模型的的实现.这篇文章总结一下最近一段时间遇到的问题.处理方法和相关策略,以及经验(其实并没有什么经验)等,白菜一枚. Demo Site:  https://github.com/bamtercelboo/cnn-lstm-bilstm-deepcnn-clstm-in-…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 7: CNN 目录 一.CNN的引入 二.CNN的层次结构 三.CNN的小Demo加深对CNN的理解 四.CNN的特点 在学习本节课知识之前,先让我们来了解一下有关CNN的知识,让我们对CNN有一个大概的认知…
[1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning模型之:CNN卷积神经网络(三)CNN常见问题总结 1. 概述 卷积神经网络是一种…
本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learning模型之:CNN卷积神经网络(二)文字识别系统LeNet-5 [7]Deep Learning…
转子http://blog.csdn.net/qianqing13579/article/details/71076261 前言 入职之后,逐渐转到深度学习方向.很早就打算写深度学习相关博客了,但是由于各种原因被搁置了. 这段时间刚好有空,就把以前的笔记整理总结了一下,温故而知新,以前有些不是特别清楚的概念,通过这次的复习豁然开朗了,也希望自己的分享能够帮助其他人更好地理解CNN. 目前的博客计划如下: LeNet论文翻译与解读 AlexNet论文翻译与解读 VGGNet,Inception,R…
title: 使用TensorBoard可视化工具 date: 2018-04-01 13:04:00 categories: deep learning tags: TensorFlow TensorBoard 图表可视化在理解和调试时显得非常有帮助. 安装: pip3 install --upgrade tensorboard 名称域(Name scoping)和节点(Node) 典型的TensorFlow有数以千计的节点,为了简单起见,我们可以为变量名(节点)划分范围. 这个范围称为名称域…