首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
多标签分类(multi-label classification)综述
】的更多相关文章
多标签分类(multi-label classification)综述
意义 网络新闻往往含有丰富的语义,一篇文章既可以属于“经济”也可以属于“文化”.给网络新闻打多标签可以更好地反应文章的真实意义,方便日后的分类和使用. 难点 (1)类标数量不确定,有些样本可能只有一个类标,有些样本的类标可能高达几十甚至上百个. (2)类标之间相互依赖,例如包含蓝天类标的样本很大概率上包含白云,如何解决类标之间的依赖性问题也是一大难点. (3)多标签的训练集比较难以获取. 方法 目前有很多关于多标签的学习算法,依据解决问题的角度,这些算法可以分为两大类:一是基于问题转化的方法,…
keras multi-label classification 多标签分类
问题:一个数据又多个标签,一个样本数据多个类别中的某几类:比如一个病人的数据有多个疾病,一个文本有多种题材,所以标签就是: [1,0,0,0,1,0,1] 这种高维稀疏类型,如何计算分类准确率? 分类问题: 二分类 多分类 多标签 Keras metrics (性能度量) 介绍的比较好的一个博客: https://machinelearningmastery.com/custom-metrics-deep-learning-keras-python/ 还有一个介绍loss的博客: https:/…
实战caffe多标签分类——汽车品牌与车辆外观(C++接口)[详细实现+数据集]
前言 很多地方我们都需要用到多标签分类,比如一张图片,上面有只蓝猫,另一张图片上面有一只黄狗,那么我们要识别的时候,就可以采用多标签分类这一思想了.任务一是识别出这个到底是猫还是狗?(类型)任务二是识别出这是蓝还是黄?(颜色) 网上看了几篇教程,有讲的非常好的,也有出bug飞上了天的(吐槽啊喂!)这里还是主要讲讲这篇:http://chuansong.me/n/494753151240.我自己已经测试了,可行,给薛大牛一个赞!但是遗憾的是这篇文章的内容严重不足啊(连lmdb生成的命令行格式都没有…
使用 scikit-learn 实现多类别及多标签分类算法
多标签分类格式 对于多标签分类问题而言,一个样本可能同时属于多个类别.如一个新闻属于多个话题.这种情况下,因变量yy需要使用一个矩阵表达出来. 而多类别分类指的是y的可能取值大于2,但是y所属类别是唯一的.它与多标签分类问题是有严格区别的.所有的scikit-learn分类器都是默认支持多类别分类的.但是,当你需要自己修改算法的时候,也是可以使用scikit-learn实现多类别分类的前期数据准备的. 多类别或多标签分类问题,有两种构建分类器的策略:One-vs-All及One-vs-One.下…
从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别
1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优化技术的具体载体,影响损失函数不同形式的因素主要有: 和谁比:和什么目标比较损失 怎么比:损失比较的具体度量方式和量纲是什么 比之后如何修正参数:如果将损失以一种适当的形式反馈给原线性模型上,以修正线性模式参数 在这篇文章中,笔者会先分别介绍线性回归(linear regression)和线性分类(…
CVPR2022 | 弱监督多标签分类中的损失问题
前言 本文提出了一种新的弱监督多标签分类(WSML)方法,该方法拒绝或纠正大损失样本,以防止模型记忆有噪声的标签.由于没有繁重和复杂的组件,提出的方法在几个部分标签设置(包括Pascal VOC 2012.MS COCO.NUSWIDE.CUB和OpenImages V3数据集)上优于以前最先进的WSML方法.各种分析还表明,方法的实际效果很好,验证了在弱监督的多标签分类中正确处理损失很重要. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. …
scikit-learn一般实例之八:多标签分类
本例模拟一个多标签文档分类问题.数据集基于下面的处理随机生成: 选取标签的数目:泊松(n~Poisson,n_labels) n次,选取类别C:多项式(c~Multinomial,theta) 选取文档长度:泊松(k~Poisson,length) k次,选取一个单词:多项式(w~Multinomial,theta_c) 在上面的处理中,拒绝抽样用来确保n大于2,文档长度不为0.同样,我们拒绝已经被选取的类别.被同事分配给两个分类的文档会被两个圆环包围. 通过投影到由PCA和CCA选取进行可视化…
CSS.02 -- 样式表 及标签分类(块、行、行内块元素)、CSS三大特性、背景属性
样式表书写位置 内嵌式写法 <head> <style type="text/css"> 样式表写法 </style> </head> 外链式写法 写在head里,<link rel="stylesheet" href = "1.css"> 行内样式表/内联式 <h1 style = "font - size : 30px ; color : red;">…
前端 HTML 标签分类
三种: 1.块级标签: 独占一行,可设置宽度,高度.如果设置了宽度和高度,则就是当前的宽高.如果宽度和高度没有设置,宽度是父盒子的宽度,高度根据内容填充. 2.行内标签:在一行内显示,不能设置宽度,高度.它的宽度,高度根据内容去填充. 3.行内块标签:在一行内显示,可设置宽度,高度. 标签分类 HTML中标签元素三种不同类型:块级标签,行内标签,行内块状标签. 常用的块级标签: <div> <p> <h1>~<h6> <ol> <ul>…
k-近邻算法 标签分类
k-近邻算法根据特征比较,然后提取样本集中特征最相似数据(最邻近)的分类标签.那么,如何进行比较呢? 怎么判断红色圆点标记的电影所属的类别呢? 如下图所示. 答:距离度量.这个电影分类的例子有2个特征,也就是在2维实数向量空间,可以使用两点距离公式计算距离,如图所示. k-近邻算法步骤如下: 1.计算已知类别数据集中的点与当前点之间的距离: 2.按照距离递增次序排序: 3.选取与当前点距离最小的k个点: 4.确定前k个点所在类别的出现频率: 5.返回前k个点所出现频率最高的类别作为当前点的预测分…