首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)
】的更多相关文章
LOJ #3119「CTS2019 | CTSC2019」随机立方体 (容斥)
博客链接 里面有个下降幂应该是上升幂 还有个bk的式子省略了k^3 CODE 蛮短的 #include <bits/stdc++.h> using namespace std; const int MAXN = 5000005; const int mod = 998244353; int fac[MAXN], inv[MAXN]; inline void PreWork(int N) { fac[0] = fac[1] = inv[0] = inv[1] = 1; for(int i = 2…
LOJ #3119. 「CTS2019 | CTSC2019」随机立方体 组合计数+二项式反演
好神的一道计数题呀. code: #include <cstdio> #include <algorithm> #include <cstring> #define N 5000003 #define ll long long #define mod 998244353 #define setIO(s) freopen(s".in","r",stdin) using namespace std; int invg[N],dp[N]…
【LOJ】#3119. 「CTS2019 | CTSC2019」随机立方体
题解 用容斥,算至少K个极大值的方案数 我们先钦定每一维的K个数出来,然后再算上排列顺序是 \(w_{k} = \binom{n}{k}\binom{m}{k}\binom{l}{k}(k!)^3\) 然后有\((n - k)(m - k)(l - k)\)是可以随便填的 设\(all = nml,v_k = nml - (n - k)(m - k)(l - k)\) 设剩下的数填的方案是\(h_k\) 那么答案就是\(w_kh_k \binom{all}{all - v_{k}}(all -…
「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\(p\),那么我们需要把\(x=x_0\),\(y=y_0\)与\(z=z_0\)的三个平面的交中填上比\(p\)小的数字,这样,剩下的正方体就成了一个长宽高分别为\((n-1)(m-1)(l-1)\)的子问题了. 考虑到我们使用的是数字的相对大小关系,而不是数字的值,也就是说,任意的\(k\)个数字…
LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\frac{\mathrm{cnt}[k]}{(nml)!}\). "恰好"这个词非常的难受,我们考虑容斥: 记 \(\mathrm{f}[i]\) 为存在 \(i\) 个极大的数的方案数,若恰好有 \(j\) 个极大的数,会被相应地统计 \(\displaystyle\binom{j}{i…
LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演
题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. 题目 恰好有 \(k\) 个极大数不太好求,我们还是转化成二项式反演. 然后就变成了给定一个点的集合 \(S\),求钦定 \(S\) 中的点是极大点的方案数.可以发现 \(S\) 中的点因为必须要保证没有一维的坐标相同,所以到底是哪些点是不重要的,有用的只有 \(|S|\).所以问题转化为钦定了…
Loj #3124. 「CTS2019 | CTSC2019」氪金手游
Loj #3124. 「CTS2019 | CTSC2019」氪金手游 题目描述 小刘同学是一个喜欢氪金手游的男孩子. 他最近迷上了一个新游戏,游戏的内容就是不断地抽卡.现在已知: - 卡池里总共有 \(N\) 种卡,第 \(i\) 种卡有一个权值 \(W_i\),小刘同学不知道 \(W_i\) 具体的值是什么.但是他通过和网友交流,他了解到 \(W_i\) 服从一个分布. - 具体地,对每个 \(i\),小刘了解到三个参数 \(p_{i,1},p_{i,2},p_{i,3}\),\(W_i\)…
LOJ #2541. 「PKUWC 2018」猎人杀(容斥 , 期望dp , NTT优化)
题意 LOJ #2541. 「PKUWC 2018」猎人杀 题解 一道及其巧妙的题 , 参考了一下这位大佬的博客 ... 令 \(\displaystyle A = \sum_{i=1}^{n} w_i\) , \(B\) 是已死猎人的 \(w_i\) 的总和 , \(P_i\) 是 \(i\) 当前要被杀死的概率 ... (抄博客咯) 不难有 \(\displaystyle P_i = \frac{w_i}{A-B} \tag{1}\) 如果 不考虑猎人死没死 , 都能被当做目标 qwq (鞭…
LOJ 3124 「CTS2019 | CTSC2019」氪金手游——概率+树形DP
题目:https://loj.ac/problem/3124 看了题解:https://www.cnblogs.com/Itst/p/10883880.html 先考虑外向树. 考虑分母是 \( \sum w \) ,同样一个子树,其实不会因为子树外部分的 \( \sum w \) 不同而对子树内的 DP 值有影响. 比如,在只考虑以子树内的 \( \sum w \) 为分母的情况下做出了 “ cr 子树内部合法的方案数 f[cr] ” 设 \( W' = \sum\limits_{i \in…
@loj - 3120@ 「CTS2019 | CTSC2019」珍珠
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 \(n\) 个在范围 \([1, D]\) 内的整数均匀随机变量. 求至少能选出 \(m\) 个瓶子,使得存在一种方案,选择一些变量,并把选出来的每一个变量放到一个瓶子中,满足每个瓶子都恰好装两个值相同的变量的概率. 请输出概率乘上 \(D^n\) 后对 \(998244353\) 取模的值. 原题传送门. @solution@ 记 \(l = \min\{…
[LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即可. 现在考虑反向边,通过容斥变成“至少有i条边不满足条件”的满足题目条件的概率,这样一来那些反向边会有一部分被变为正向边,另一部分被删除.如果枚举哪些边被反向的话可以做到$O(2^nn^2)$.但事实上我们并不关心具体是哪些边被反向了,而只关心有多少边被反向了.于是自然有一个方程f[i][j][k…
LOJ #2540. 「PKUWC 2018」随机算法(概率dp)
题意 LOJ #2540. 「PKUWC 2018」随机算法 题解 朴素的就是 \(O(n3^n)\) dp 写了一下有 \(50pts\) ... 大概就是每个点有三个状态 , 考虑了但不在独立集中 , 考虑了并且在独立集中 , 还没考虑 . 转移就很显然了 qwq 然后要优化嘛 , 把其中两个状态合起来 , 也就是分成考虑了和没考虑了的两种 . 其中考虑了的那种 , 只会存在两种状态 , 要么是在独立集内 , 要么就是与独立集联通 , 没有考虑的 绝对不和独立集联通 就行了 . 然后我们枚举…
「CTS2019 | CTSC2019」氪金手游 解题报告
「CTS2019 | CTSC2019」氪金手游 降 智 好 题 ... 考场上签到失败了,没想容斥就只打了20分暴力... 考虑一个事情,你抽中一个度为0的点,相当于把这个点删掉了(当然你也只能抽中度为0的点) 删掉就是字面意思,就是剩下的树变成子问题 考虑为什么,在抽中这个\(i\)号点后,抽中其他点的概率为 \[ \frac{W-w_i}{W}\sum_{i=0}^{\infty}(\frac{w_i}{W})^i=1 \] 说明这个点已经白给了 然后考虑这个树如果是一颗外向树,就是每个点…
LOJ #2542. 「PKUWC 2018」随机游走(最值反演 + 树上期望dp + FMT)
写在这道题前面 : 网上的一些题解都不讲那个系数是怎么推得真的不良心 TAT (不是每个人都有那么厉害啊 , 我好菜啊) 而且 LOJ 过的代码千篇一律 ... 那个系数根本看不出来是什么啊 TAT 后来做了 HDU 4035 终于会了.... 感谢 雕哥的帮助 !!! 题意 #2542. 「PKUWC 2018」随机游走 题解 原本的模型好像我不会那个暴力dp .... 就是直接统计点集中最后经过的点的期望 , 也就是点集中到所有点步数最大值的期望 . (也许可以列方程高斯消元 ? 似乎没分)…
LOJ 3120: 洛谷 P5401: 「CTS2019 | CTSC2019」珍珠
题目传送门:LOJ #3120. 题意简述: 称一个长度为 \(n\),元素取值为 \([1,D]\) 的整数序列是合法的,当且仅当其中能够选出至少 \(m\) 对相同元素(不能重复选出元素). 问合法序列个数. 题解: 设颜色为 \(c\) 的珍珠的个数为 \(\mathrm{cnt}_c\),则一个方案合法当且仅当: \[\begin{aligned}\sum_{c=1}^{D}\left\lfloor\frac{\mathrm{cnt}_c}{2}\right\rfloor&\ge m\\…
@loj - 2290@ 「THUWC 2017」随机二分图
目录 @description@ @solution@ @accepted code@ @details@ @description@ 一个左右各 n 个点的二分图,图中的边会按照一定的规律随机出现.将这些边分到若干个组中(每条边至多属于一个组): 第(1)类组每组有一条边,该边有 50% 的概率出现. 第(2)类组每组有两条边,这两条边有 50% 的概率同时出现,有 50% 的概率同时不出现. 第(3)类组每组有两条边,这两条边恰好出现一条,各有 50% 的概率出现. 问完美匹配数量的期望.…
【LOJ】#3121. 「CTS2019 | CTSC2019」无处安放
第一次有耐心去研究一道题答-- 以前看到题答要么扔要么就水能简单手玩出来的 1 2可以手玩出来,快乐! 4呢发现3 3比较格路,就把3 3都配了,一边带个4的除了4 4都塞满这么放进去,然后把一边带2的两两配起来,然后撒1把这些都填满,最后扔4 4就好了 剩下的可以用玩俄罗斯方块的技巧,枚举一个位置pos,若底边长度是r,找[pos,pos + r - 1]这个区间上最大值最小的一个,如果相同选pos最小的一个,是可以按照奇怪的方法各种排序,随机扰动-- 基本都是这个套路了,非2的测试点可以通过…
[LOJ#3119][Luogu5400][CTS2019]随机立方体(容斥+DP)
https://www.cnblogs.com/cjyyb/p/10900993.html #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ,mod=; int n,m,l,d,V,M,k,T,ans,v[N],w[N],s[N],is[N],fac[N],inv[N]; : 1ll*fac[n]*inv[m]%m…
【LOJ】#3123. 「CTS2019 | CTSC2019」重复
LOJ3123 60pts 正难则反,熟练转成总方案数减掉每个片段都大于等于s的字典序的方案 按照一般的套路建出kmp上每个点加一个字符的转移边的图(注意这个图开始字母必须是nxt链中下一个相邻的字符最大的一个,不然就字典序比它小了) 然后大力猜结论可能是走m步走出一个环的个数,很容易发现这是不漏的,因为一个串无限重复最后都会走出一个m步的(不一定是简单环的)环 不重的我没证出来,抱着试试看的心态我们写个极其简单的dp,发现它过了-- 100pts 很容易发现每个点要么走到nxt链中下一个相邻字…
【LOJ】#3120. 「CTS2019 | CTSC2019」珍珠
LOJ3120 52pts \(N - D >= 2M\)或者\(M = 0\)那么就是\(D^{N}\) 只和数字的奇偶性有关,如果有k个奇数,那么必须满足\(N - k >= 2M\) 所以设\(f[i][j]\)表示第\(i\)个数有\(j\)个奇数的方案数,\(j\cdot f[i][j] \rightarrow f[i + 1][j - 1]\)和\((D - j) \cdot f[i][j] \rightarrow f[i + 1][j + 1]\) 64pts 这个只需要把上面的…
loj3120 「CTS2019 | CTSC2019」珍珠
link .... 感觉自己太颓废了....还是来更题解吧...[话说写博客会不会涨 rp 啊 qaq ? 题意: 有 n 个物品,每个都有一个 [1,D] 中随机的颜色,相同颜色的两个物品可以配对.现在要求至少能配 m 对,问方案数? $n,m\leq 10^9,D\leq 10^5$ 题解: 配对数量 $\geq m \Longleftrightarrow$ 出现奇数次的权值个数 $\leq n-2m$ . 一个权值出现偶数次的生成函数: $\frac{e^x +e^{-x}}{2}$ 一个…
Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1\) 至 \(n\))其中第 \(i\) 个物品会在 \(T_i\) 时刻出现. 在 \(0\) 时刻时,小 G 可以任选 \(n\) 个物品中的一个,我们将其编号记为 \(s_0\).并且如果 \(i\) 时刻选择了物品 \(s_i\),那么 \(i + 1\) 时刻可以继续选择当前 物品或者选择…
Loj #2494. 「AHOI / HNOI2018」寻宝游戏
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得这一年出题的机会. 作为新生的你对这个活动非常感兴趣.你每天都要从西向东经过教学楼一条很长的走廊,这条走廊是如此的长,以至于它被人戏称为 infinite corridor.一次,你经过这条走廊的时,注意到在走廊的墙壁上隐藏着 \(n\) 个等长的二进制的数字,长度均为 \(m\).你从西向东将这些…
loj#2020 「AHOI / HNOI2017」礼物 ntt
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变量为k \(\sum\limits_1^n(a_i-(b_i+k))^2\) \(\sum\limits_1^n(a_i^2-2*a_i*(b_i+k)+(b_i+k)^2)\) \(\sum\limits_1^n(a_i^2-2*a_i*b_i-2*a_i*k+b_i^2+2*b_i*k+k^2)…
LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变成 \(\displaystyle \lfloor \frac{N}{k} \rfloor\) ,到 \(1\) 停止. 求一共有多少不同的操作序列,也就是操作次数不一样或者某次操作的 \(k\) 不相同. 题解 首先考虑 dp ,令 \(f_i\) 为以 \(i\) 为开头的不同操作序列数. 显然…
LOJ #2538. 「PKUWC 2018」Slay the Spire (期望dp)
Update on 1.5 学了 zhou888 的写法,真是又短又快. 并且空间是 \(O(n)\) 的,速度十分优秀. 题意 LOJ #2538. 「PKUWC 2018」Slay the Spire 题解 首先我们考虑拿到一副牌如何打是最优的,不难发现是将强化牌从大到小能打就打,最后再从大到小打攻击牌 . 为什么呢 ? 证明(简单说明) : 如果不是这样 , 那么我们就是有强化牌没有用 , 且攻击牌超过两张 . 我们考虑把最小的那张攻击牌拿出来 , 然后放入一张强化牌 . \(\becau…
loj#2054. 「TJOI / HEOI2016」树
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> #include<algorithm> inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9')c = getchar(); while(c <= '9' &&…
「THUWC 2017」随机二分图
「THUWC 2017」随机二分图 解题思路 : 首先有一个 \(40pts\) 的做法: 前 \(20pts\) 暴力枚举最终的匹配是怎样的,check一下计算方案数,后 \(20pts\) 令 \(f[s][i]\) 表示当前左边的点匹配到前 \(i\) 个,右边的点匹配状况是 \(s\) 时继续往下匹配方案数的期望,枚举与 \(i\) 相连的边转移即可. 对于剩下的 \(t=1,t=2\) 的情况,先和 \(t = 0\) 一样直接连 \((a1,b1), (a2,b2)\).然后观察此时…
LOJ#3054. 「HNOI 2019」鱼
LOJ#3054. 「HNOI 2019」鱼 https://loj.ac/problem/3054 题意 平面上有n个点,问能组成几个六个点的鱼.(n<=1000) 分析 鱼题,劲啊. 容易想到先枚举这个\(D\),然后极角序排一下,我们枚举\(A\),对\(B,E,F\)分别统计. 枚举\(A\)的过程中用一个指针维护\(E,F\)的范围,对答案贡献是一个\(\sum\binom{x}{2}\)的形式,容易维护. 然后现在要求\(B\)的方案数,可以发现符合条件的\(BC\)一定满足线段\(…
[LOJ 2022]「AHOI / HNOI2017」队长快跑
[LOJ 2022]「AHOI / HNOI2017」队长快跑 链接 链接 题解 不难看出,除了影响到起点和终点的射线以外,射线的角度没有意义,因为如果一定要从该射线的射出一侧过去,必然会撞到射线 因此,我们可以把射线的方向规约成两类,分成向上与向下的两种. 不难发现,改变射线的方向后,原有的限制条件并未被改变. 要判断一条线是否规约为"垂直向下",只需判断它的关于P的极角是否在S和T关于P的极角之间. 将所有射线按端点的横坐标排序,依次计算每个端点到S的最短路径上,距离它最近的点nx…